
Orientation on Mathematical Research

The Yoneda Lemma
November 2023

Supervisor: Dr.Sara Mehidi

Authors: Q. van der Velden (6872018)
B. Kiezebrink (5257956)
J. Grube (2850222)
W. Price (0972657)
Rashiqa Dawood (1916890)

Department of Mathematics
Utrecht University





Table of Contents

1 Introduction 1

2 Basics of Category Theory 2
2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Morphisms in a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 New categories from old . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Construction of new functors from old functors . . . . . . . . . . . . . . . . . 8
2.7 Functor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.8 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Representable Functors 14
3.1 Presheaves and copresheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Yoneda Lemma 17

5 Examples of the Yoneda correspondence 19
5.1 Presheaves on a monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Presheaves on pre-ordered categories . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Presheaves on a topological space . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 The category of directed multigraphs as a presheaf category . . . . . . . . . 22

6 The Yoneda Isomorphism 23
6.1 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 The covariant Yoneda Isomorphism . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 The contravariant Yoneda Isomorphism . . . . . . . . . . . . . . . . . . . . . 26

7 Applications 27
7.1 The Yoneda Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 The Cayley Theorem from the Yoneda Lemma . . . . . . . . . . . . . . . . . 30
7.3 Characterization of polynomials on rings . . . . . . . . . . . . . . . . . . . . 31

8 Constructions in the category of presheaves 34
8.1 Working with presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Exponential Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 Exponentials in presheaf categories . . . . . . . . . . . . . . . . . . . . . . . 36
8.4 Exponentials in the category of Graphs . . . . . . . . . . . . . . . . . . . . . 37

9 Abelian Categories and Mitchell’s Embedding Theorem 41
9.1 Preadditive Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Additive and Abelian Categories . . . . . . . . . . . . . . . . . . . . . . . . . 44

References 51



1 Introduction

When one looks at subjects in mathematics one may notice that, indeed, subjects like the
theory of groups or the theory of topological spaces are built up in a similar manner.
In either case, we consider certain objects which are groups and topological spaces
respectively together with relations between these objects, these are group homomorphisms
and continuous functions respectively. Naturally, we may then wonder whether there are
mathematical subjects in which these objects and relations follow similar rules. This brings
us to category theory.

Category theory, in a way, is to mathematics what abstract algebra is to topics such as
geometry and number theory. It in fact gives us a way to describe mathematical structures
such as the theory of groups or topological spaces in a more general sense, allowing us to
relate these subjects themselves to each other.

The goal in this report will be to understand and discuss applications of a central theorem in
category theory, typically referred to as the “Yoneda Lemma”, named after the Japanese
mathematician Nobuo Yoneda. The Yoneda Lemma tells us that the objects of any
category (the category of sets, groups, topological spaces, rings etc), can be determined
“up-to-isomorphism” by looking at the structure of morphisms (e.g. functions, group
homomorphisms, continuous maps etc) into, or out of them. Furthermore, it gives us a

way of embedding any category C inside a larger “presheaf” category Ĉ, and the Yoneda
Lemma enables us to perform constructions in this category via C.

In order to get to understanding the Yoneda Lemma itself however, we must first discuss the
fundamental theory of category theory. We first prove a basic form of the Yoneda Lemma,
accompanied by some simple examples to help build an intuition for the correspondence.
Then we build the necessary structure to state and prove a stronger form of the Yoneda
Lemma, which we refer to as the Yoneda isomorphism. The final sections of the report
explore some ways of applying the Yoneda Lemma to various areas of mathematics.

1



2 Basics of Category Theory

2.1 Categories

In this section we introduce the basic concepts of category theory that are needed to
understand the Yoneda Lemma. The primary content of this report begins with the sections
on Representable Functors and the Yoneda Lemma, so the reader is advised to read ahead
if possible, and use this section as a reference for concepts they are not familiar with. The
recommended reference for more category theory background is Category Theory in Context
(Reihl. [1]), where many examples of the concepts discussed in this section can be found.
We first introduce the concept of a category.

Definition 2.1 (Category). A category C is a pair consisting of a collection Obj(C) of objects
and a collection Arr(C) of arrows (also called morphisms). The elements from Obj(C) are
called C-objects and the elements from Arr(C) are called C-arrows. On C we have the following
structure:

1. For each C-arrow f there are distinguished objects dom(f), cod(f) ∈ Obj(C) (the
domain and codomain of f). We write f : A → B to say that dom(f) = A and
cod(f) = B.

2. For two C-arrows f, g with cod(f) = dom(g) there is another arrow, the composition
of f and g denoted g ◦ f with g ◦ f : dom(f) → cod(g).

3. For three C-arrows f, g, h with f : A→ B, g : B → C, h : C → D we have h ◦ (g ◦ f) =
(h ◦ g) ◦ f . We say that composition is associative.

4. For a C-object A there is a distinguished identity arrow IdA : A→ A, such that for all
C-arrows f : A→ B, g : C → A, f ◦ IdA = f and IdA ◦g = g. We also use the notation
1A for this arrow.

Definition 2.2. In a category C, fixing a pair of objects A,B defines a class Hom(A,B) :=
{f ∈ Arr(C) | dom(f) = A ∧ cod(f) = B}, and these classes form a partition of Arr(C). To
specify the category in the notation, we write HomC(A,B) or C(A,B). When this class forms
a set, it is called a hom-set, and a category C in which Hom(A,B) is a set for every pair of
objects A,B ∈ Obj(C), is called a locally-small category. A small category is a locally-small
category in which Obj(C) is also a set. A large category is a category which is not small.

Remark 2.3. The categories of interest in this report are all locally-small, because the
Yoneda Lemma is about locally-small categories. Instead of defining Arr, dom, cod, it is
natural to define a locally-small category C by directly defining the hom-sets C(A,B) for
every pair of objects A,B. Identities are given as distinguished elements IdA ∈ C(A,A),
and the composition operation can be described as a family of object-parametrised functions
◦A,B,C for A,B,C ∈ Obj(C) (functions - because these are sets):

◦A,B,C C(B,C)× C(A,B) C(A,C)

(g, f) g ◦ f

:
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The class Arr(C) can be recovered as ∪A,B∈Obj(C) HomC(A,B), and dom(f), cod(f) refer to
the objects A,B such that f ∈ HomC(A,B). Whenever f, g are composable, i.e. cod(f) =
dom(g), the arrow g ◦ f is g ◦A,B,C f , where A := dom(f), B := cod(f) = dom(g), C :=
cod(g). Typically the definition of ◦A,B,C is uniform in the parameters, so we just describe
◦, understanding that it must restrict appropriately to the relevant hom-sets.

We now introduce a few examples of categories. It is readily checked that these are indeed
categories

Example 2.4.

1. The category Set of sets has the class of sets as objects and for sets A,B, Set(A,B) is
the set of functions from A to B. Composition of functions is the standard composition,
i.e. (g ◦ f)(x) = g(f(x)), and IdA is the identity function IdA(x) = x.

2. The category Grp of groups has the class of groups as objects and, for groups
G,H, Grp(G,H) is the set of group homomorphisms from G to H. Composition
and identities are the same as in Set (one can check these always yield group
homomorphisms).

3. Similarly as for groups we have the category Ab of abelian groups and group
homomorphisms, the category Ring of rings (with identity) and ring homomorphisms,
the category Cring of commutative rings and ring homomorphisms, the category Mon
of monoids and monoid homomorphisms and the category Cmon of commutative
monoids and monoid homomorphisms.

4. An example of a category with non function-like morphisms is given by taking the
category with as objects all elements of Z and as arrows the total order ≤ on Z, such
that for a, b ∈ Z we have a unique arrow a → b precisely when we have a ≤ b. It is
then possible to check that indeed all axioms of a category hold.

5. Consider a topological space T . Take the objects of our category to be the open sets
in T and let our arrows be the inclusion ⊆ of these sets. For two open sets U and V
in T we then have an arrow U → V whenever U ⊆ V .

2.2 Morphisms in a category

We prove various lemmas about morphisms in a general category C.
In the categories of Example 2.4, the identity arrows are always the unique arrow that
behaves as a left and right identity with respect to composition (i.e. the condition on IdA).
This is easily proved for a general category.

Lemma 2.5. Let I : A→ A be an arrow such that for all f : A→ B, g : C → A, f ◦ I = f
and I ◦ g = g. Then I = IdA.

Proof. I = I ◦ IdA = IdA. The first equality uses f ◦ IdA = f for any f with dom(f) = A,
and the second uses the assumption I ◦ g = g for any g with cod(g) = A.
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Definition 2.6. Let C be a category and f : A→ B a C-arrow.

1. A right inverse of f is a morphism g : B → A such that g ◦ f = IdA

2. A left inverse of f is a morphism h : B → A such that f ◦ h = IdB

3. f is an isomorphism if has both a left and right inverse.

Right (resp. left) inverses to f are not necessarily unique, but if f is an isomorphism, then
there is only one left inverse and only one right inverse, and they are the same morphism.
When it exists, we refer to it as “the inverse of f”, written f−1.

Lemma 2.7. Let f : A → B be an isomorphism, with a right inverse g : B → A and a left
inverse h : B → A. Then g = h, and moreover, g is both the unique right inverse and the
unique left inverse of f .

Proof. g = g ◦ IdB = g ◦ f ◦ h = IdA ◦h = h, and if g′, h′ : B → A are any another right
(resp. left for h′) inverse of f , then g′ = g′ ◦ IdB = g′ ◦ f ◦ h = IdA ◦h = h = g, and
h′ = IdA ◦h′ = g ◦ f ◦ h′ = g ◦ IdB = g.

Aside from inverses we wish to define terms for when a left or right cancellation law holds
for morphisms.

Definition 2.8. Let f : A → B, g : B → C and h : B → C be morphisms. If g = h
whenever g ◦ f = h ◦ f we say that f is an epimorphism. If g = h whenever f ◦ g = f ◦ h we
say that f is a monomorphism.

2.3 Functors

In Example 2.4, we saw that the collection of objects of a certain mathematical structure
(groups, rings) forms a category where the morphisms are the appropriate notion of
structure-preserving map between two such structures. This idea applies to the mathematical
structure of a category itself, and so we define the relevant class of structure-preserving
morphisms for between categories, called a functor.

Definition 2.9. For categories C,D, a functor F : C → D is a pair of assignments F0 :
Obj(C) → Obj(D) and F1 : Arr(C) → Arr(D) such that for every object A in C we have
F1(IdA) = IdF0(A) and for every C-arrow f : A→ B we have F1(f) : F0(A) → F0(B). Finally

for C-arrows A f−→ B
g−→ we have F1(g ◦ f) = F1(g) ◦ F1(f). We often write F0(A) = FA

and F1(f) = F (f) (with or without parentheses). We call these conditions on the F0, F1 the
functoriality axioms, which say that functors preserve identities and compositions.

Remark 2.10. For locally-small categories C,D, specifying F1 amounts to supplying a family
of functions {C(A,B) → D(FA, FB)}A,B

Definition 2.11. Let F : C → D be a functor between locally-small categories. F is called
full if the function

4



C(A,B) D(FA, FB)

f Ff

is surjective for all A,B ∈ Obj(C) and faithful if it is injective for all A,B ∈ Obj(C). We
call a functor fully-faithful if it is full and faithful.

Lemma 2.12. Let F : C → D be a functor. Then F preserves isomorphisms.

Proof. Let f : A → B be an isomorphism in C with inverse g : B → A. Then IdF (B) =
F (IdB) = F (f ◦ g) = F (f) ◦ F (g), and IdF (A) = F (IdA) = F (g ◦ f) = F (g) ◦ F (f). Thus,
F (f) is an isomorphism in D with inverse F (g).

Definition 2.13. Let F : C → D be a functor. We say that F reflects isomorphisms,if for
any morphism f : C → D, if F (f) : F (C) → F (D) is an isomorphism then so is f : C → D.

Lemma 2.14. Let F : C → D be a fully-faithful functor. Then F reflects isomorphisms.

Proof. Let f : C → D such that F (f) : F (C) → F (D) is an isomorphism. Let h : F (D) →
F (C) be the inverse of F (f). Since F is full there exists g : D → C such that F (g) = h.
And so F (IdD) = IdF (D) = F (f) ◦ h = F (f) ◦ F (g) = F (f ◦ g), and because F is faithful we
get f ◦ g = IdD. We also have F (IdC) = F (g ◦ f) and again by faithfulness of the functor F ,
we get g ◦ f = IdC .

Definition 2.15. A functor F : C → D is an embedding if it is full, faithful and injective
on objects.

Definition 2.16. Let C,D, E be categories, and F : C → D, G : D → E be functors. We
define their composition, G ◦ F , to be the pair consisting of (G ◦ F )0 = G0 ◦ F0 : Obj(C) →
Obj(E) and (G ◦ F )1 = G1 ◦ F1 : Arr(C) → Arr(E). We verify this is functorial (that it
preserves identities and compositions). For a C-object A we have

(G ◦ F )1(IdA) = G0(F0(IdA)) = G0(IdF0(A)) = IdG0(F0(A)) = Id(G◦F )0(A)

Let now f : A→ B be a C-arrow. Then F1(f) : F0(A) → F0(B) and consequentlyG1(F1(f)) :
G0(F0(A)) → G0(F0(B)), or equivalently (G ◦ F )1(f) : (G ◦ F )0(A) → (G ◦ F )0(B). Finally

for C-arrows A f−→ B
g−→ C we find

(G ◦ F )1(g ◦ f) = G1(F1(g ◦ f))
= G1(F1(g) ◦ F1(f))

= G1(F1(g)) ◦G1(F1(f))

= (G ◦ F )1(g) ◦ (G ◦ F )1(f).

We conclude that G ◦ F is a well-defined functor C → E .

Definition 2.17. Let C be a category. The identity functor IdC : C → C is defined on objects
by (IdC)0(A) = A and on arrows by (IdC)1(f) = f . We verify functoriality. For A ∈ Obj(C),
(IdC)1(IdA) = IdA = Id(IdC)0(A), and if f : A → B is a C-arrow, then (IdC)1(f) = f : A → B,

or equivalently (IdC)1(f) : (IdC)0(A) → (IdC)0(B). Let finally A
f−→ B

g−→ C be C-arrows.
Then we have

(IdC)1(g ◦ f) = g ◦ f = (IdC)1(f) ◦ (IdC)1(g).
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Lemma 2.18. For a category C, IdC is the identity with respect to composition of functors.

Proof. Let F : D → C be a functor. Then for D ∈ Obj(D), (IdD ◦F )0(D) = (IdD)0(F0(D)) =
F0(D) and for f : D → D′

(IdD ◦F )1(f) = (IdD)1(F1(f)) = F1(f)

So IdD ◦F = F , since their assignments on objects and arrows agree. A similar proof shows
G ◦ IdD = G.

Lemma 2.19. Composition of functors is associative.

Proof. Suppose we have a chain C F−→ D G−→ E H−→ S of composable functors between
categories.

(H ◦(G◦F ))0 = H0◦(G◦F )0 = H0◦(G0◦F0) = (H0◦G0)◦F0 = (H ◦G)0◦F0 = ((H ◦G)◦F )0

and similarly (H ◦(G◦F ))1 = ((H ◦G)◦F )1. We conclude that H ◦(G◦F ) = (H ◦G)◦F .

Corollary 2.20. The class of small categories and functors between them forms a large
category Cat, with composition and identities for functors as above.

Proof. For a functor F : C → D we define C to be the domain of F and D to be the codomain
(note this makes composition well-defined). The previous lemmas verify the identity and
associativity axioms.

Remark 2.21. The restriction to small categories is necessary, since the class of all
small-categories is a proper class. Larger categories of categories can be formed, but to
make these considerations precise, one must choose their foundations. See [2] for further
details.

2.4 Natural Transformations

A functor F : I → D can be thought of as a family of objects in D indexed by the category
I. For each i ∈ Obj(I), we have an object Di := F (i) ∈ Obj(D), and morphisms i → j in
I become morphisms between Di and Dj (via F ).

I D

1 2
F→ D1 D2

3 D3

4 D4

a

c

b

Fa

Fc

Fbe Fe
d Fd
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This structured collection of objects and morphisms is called a diagram in D of shape I,
and is an equivalent perspective on what a functor is. Instead of starting with the category
I, one can start with a choice of objects and morphisms in D, and derive the appropriate
“shape category” I that makes those choices into a functor.
Given two functors/diagrams F,G : I → D, we might compare their diagrams by defining
pointwise morphisms F (i) → G(i) in D. This gives us a notion of “2-morphism” between
morphisms in Cat (i.e. functors), and for this notion to be well-behaved, we need this
pointwise morphisms to be “compatible” with the morphisms within each diagram. Such a
family of morphisms is called a natural transformation, which we define below.

Definition 2.22 (Natural transformation). Let F,G : C → D be functors. Then a collection
of arrows η = (ηC : F (C) → G(C)|C ∈ Obj(C)) is called a natural transformation from F
to G, written η : F ⇒ G if for each C-arrow f : C → C ′ the following diagram commutes:

F (C) G(C)

F (C ′) G(C ′)

F (f)

ηC

ηC′

G(f)

2.5 New categories from old

If we have some category C we can construct from it a category Cop: the opposite category
of C. This category is as follows:

• Objects are precisely the objects of C.

• Arrows are precisely the arrows of C with their domain and codomain interchanged.
That is, if in C we have that f is an arrow C → C ′ then in Cop we have that f is an
arrow C ′ → C. We often write f for some arrow f : C → C ′ in C viewed as an arrow
C ′ → C in Cop.

• Composition is given by composition in C. That is, for C f−→ C ′ g−→ C ′′ the composition
is given by g ◦ f = f ◦ g.

• Identities are precisely the identities from C. That is from some object C from Cop the
identity in Cop at C is just the identity at C in C.

It is readily shown that the above indeed gives us a category. The opposite category can be
seen as the result of flipping all the arrows in a category. We can now also consider functors
from Cop to some category D.

Definition 2.23. Let C be a category. Then a contravariant functor from C to some category
D is a functor from Cop to D.

We also call functors F : C → D covariant functors from C to D.

Definition 2.24. Suppose now that we have two categories C → D. Then we may define
the product category C × D as follows:

7



• Objects are pairs (C,D) where C is a C-object and D is a D-object.

• Arrows are pairs (f, g) where f : C → C ′ is a C-arrow and g : D → D′ is a D-arrow.
The domain of (f, g) is (C,D) and the codomain is (C ′, D′).

• Composition is given by componentwise composition. That is, it is given by (gC, gD) ◦
(fC, fD) = (gC ◦ fC, gD ◦ fD).

• Identities are componentwise identities. That is, for some object (C,D) the
corresponding identity 1(C,D) = (1C , 1D).

It is readily shown that the above indeed gives us a category.

2.6 Construction of new functors from old functors

We have constructions of functors corresponding the construction of new categories above.
The first corresponds to taking the opposite category.

Lemma 2.25. Let F : C → D be a functor. Then there is a functor F op : Cop → Dop defined
by F op(C) = C for objects and F op(f) = F (f) for arrows.

Proof. Let f : C ′ → C be a Cop-arrow. Then f : C → C ′ and therefore
F (f) : F (C) → F (C ′). Consequently F (f) : F (C ′) → F (C). By definition of F op

we now get F op(f) : F op(C ′) → F op(C).

Let now C ′′ f−→ C ′ g−→ C be Cop-arrows. Then C
g−→ C ′ f−→ C ′′ in C. Then we have

F op(IdC) = F (IdC) = IdFC = IdFC = IdF op(C)

F op(g ◦ f) = F op(f ◦ g) = F (f ◦ g) = F (f) ◦ F (g) = F (g) ◦ F (f) = F opp(g) ◦ F op(f)

We conclude that F op is a functor Cop → Dop.

We call the functor from the result above the opposite functor of F .

Theorem 2.26. Let C be a locally small category. Then there is a functor HomC(−,−) :
Cop×C → Set defined (A,B) 7→ HomC(A,B) on objects and HomC(−,−)(f, g)(h) = g◦h◦f
on arrows (note that f is from A′ to A in C here)

Proof. We verify the functoriality axioms. Let (A,B)
(f,g)−−→ (A′, B′)

(f ′,g′)−−−→ be composable

8



arrows in Cop × C. Then we find for h ∈ HomC(A,B) that

HomC(−,−)(Id(A,B))(h) = HomC(−,−)(IdA, IdB)(h)

= IdB ◦h ◦ IdA
= h

= IdHomC(A,B)(h)

HomC(−,−)((f ′, g′) ◦ (f, g))(h) = HomC(−,−)(f ′ ◦ f, g′ ◦ g)(h)
= HomC(−,−)(f ◦ f ′, g′ ◦ g)(h)
= (g′ ◦ g) ◦ h ◦ (f ◦ f ′)

= g′ ◦ (g ◦ h ◦ f) ◦ f ′

= HomC(−,−)(f ′, g′)(g ◦ h ◦ f)
= HomC(−,−)(f ′, g′)(HomC(−,−)(f, g)(h))

= (HomC(−,−)(f ′, g′) ◦ HomC(−,−)(f, g))(h)

so HomC(−,−) respects identities and compositions.

Notation 2.27. We also write C(−,−) for this functor, or Hom(−,−) when the category
can be inferred.

2.7 Functor categories

Definition 2.28. Let C,D be categories and with C small. We define the functor category
[C,D] with functors from C to D as objects, and Hom[C,D](F,G) = Nat(F,G), the class
of natural transformations from F to G. Composition is given by µ ◦ η := ((µ ◦ η)C =
µC ◦ ηC |C ∈ Obj(C)) and identities by IdF := (IdFC |C ∈ Obj(C)).

Lemma 2.29. [C,D] is a well-defined category.

Proof. Let η : F ⇒ G, µ : G ⇒ H be natural transformations between functors F,G,H :
C → D. It is clear that for C ∈ Obj(C) we have (µ ◦ η)C : F (C) → H(C). Let now
f : C → C ′ be a C-arrow. Then using the naturality of η, µ we find that the inner squares of

FC GC HC

FC ′ GC ′ HC ′

F (f)

ηC

ηC′

G(f)

µC

µC′

H(f)

commute and consequently the outer square does too. But the outer square is the naturality
square for µ◦η at f , so µ◦η is a natural transformation F ⇒ H, and hence the composition
operation is well-defined. As composition of arrows in D is associative it follows that this
composition is (because it is defined pointwise). It remains to verify that IdF is a natural
transformation for any F : C → D, and that it satisfies the identity axioms. For an arrow
f : C → C ′, the naturality square for IdF is

9



FC FC

FC ′ FC ′

(IdF )C

Ff Ff

(IdF )C′

which commutes, since the horizontal arrows are identities. It is readily shown that IdF acts
as the identity with respect to composition of natural-transformations. We conclude that
[C,D] is indeed a category.

Notation 2.30. We also write DC for [C,D].

Definition 2.31. A natural transformation µ : F ⇒ G is called a natural isomorphism if it
is an isomorphism in the functor category.
If µ : F ⇒ G is a natural isomorphism, we say that F and G are naturally isomorphic.

Proposition 2.32. Let F,G : C → D be funtors and µ : F ⇒ G a natural transformation.
Then µ is a natural isomorphism iff each component µC : F (C) → G(C) is an isomorphism
(C in Obj(C)).

Proof. (⇒) Suppose µ : F ⇒ G is a natural isomorphism. Note that the identity natural
tranformation is the identity map at each component, and so if η : G ⇒ F is the inverse of
µ, we will have that each component µC has ηC as its inverse.
(⇐) Conversely suppose each for each C ∈ Ob(C), µC : F (C) → G(C) is an isomorphism.
Then we define η : G ⇒ F where each component ηc is defined to be the inverse of µC . We
still need to verify the naturality condition for η. Let f : A → A′. Consider the following
diagram:

F (A) G(A) F (A)

F (A′) G(A′) F (A′)

F (f)

µA

G(f)

µA′

ηA

F (f)

ηA′

Note that the left square commutes by naturality of µ, and the outer rectangle commutes as
well, since ηC = (µC)

−1 for each C ∈ C. So what we get is F (f) ◦ ηA ◦ µA = ηA′ ◦G(f) ◦ µA,
and since µA is an isomorphism, we get F (f) ◦ ηA = ηA′ ◦ G(f). Thus, the right square
commutes and so η is a natural transformation, and is the inverse of µ : F ⇒ G in the
functor category [C,D].

2.8 Limits and Colimits

In this section we shall discuss limits and colimits. We start by defining initial and terminal
objects.

Definition 2.33. Let C be a category and let X be an object of C. We say that X is an
initial object in C if for every object A in C there is precisely one morphism f : X → A.
Furthermore, we say that X is a terminal object in C if for every object A in C there is
precisely one morphism f : A→ X.
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Example 2.34. An initial object in the category of sets is the empty set ∅, since for any set
A, one may only consider the unique function f : ∅ → A. An example of a terminal object is
the set {∅} containing only the empty set, as for any set A there is only the trivial function
f : A→ {∅} with f(a) = ∅ for all a ∈ A.

Having defined terminal objects we wish to define cones, such that we can later combine
these two notions in the definition of a limit.

Definition 2.35. Let I and C be categories and consider the functor F : I → C. We then
define a cone of C to be an object C of C together with morphisms ψi : C → F (i) for each
indexing object i in I such that for every morphism f ∈ I(i, j) we have F (f) ◦ψi = ψj. We
shall write (C,ψi) for such a cone.

C

F (i) F (j)

ψi ψj

F (f)

Using the above definition we may define the category of cones corresponding to the functor
F to be Cone(F ). The objects of this category are the cones corresponding to F and, if
(C,ψi) and (D,ϕi) are two cones, its arrows are the morphisms f : C → D in C such that
ϕi ◦ f = ψi for every i ∈ I. Having defined the category of cones we may now define a limit
of a functor as follows.

Definition 2.36. Let F : I → C be a functor between two categories. A limit of F is a
terminal object in the cone category Cone(F ). In other words, a limit of F is a cone (L, ψi)
such that for any other cone (C, ϕi) there is exactly one morphism f : (C, ϕi) → (L, ψi) in
Cone(F ).

The following definition gives an example of a limit.

Definition 2.37. Let C be a category and let F : {1, 2} → C be a functor between the
discrete category of two objects and C. Then a product is a limit of F .

Similar to a cone, we may define its dual notion, a co-cone, in order to define colimits.

Definition 2.38. Let F : I → C be a functor between two categories. A co-cone of F is
an object C of C together with morphisms ψi : F (i) → C such that for every morphism
f : i→ j we have ψj ◦ F (f) = ψi. We shall write (C,ψi) for such a co-cone.

F (i) F (j)

C

F (f)

ψi

ψj

Morphisms between co-cones may then be defined in the same way as was done with cones.
We are now ready to define the dual notion of a limit, the colimit.
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Definition 2.39. Let F : I → C be a functor between two categories. A colimit of F is
a co-cone (L, ψi) such that for any other co-cone (C, ϕi) of F there is a unique morphism
f : (L, ψi) → (C, ϕi) such that f ◦ ψi = ϕi.

As an example of a colimit we have the dual notion of a product, a co-product.

Definition 2.40. Let C be a category and let F : {1, 2} → C be a functor between the
discrete category of two elements and C. Then we define a co-product to be a colimit of F .

Recall from Lemma 2.25 that a functor F : C → D gives rise to a functor F op : Cop → Dop.
We show a limit of F is a colimit for the functor F op.

Proposition 2.41. A limit in a category C is a colimit in the opposite category Cop.

Proof. Let F : I → C be a functor and (Z, µi) be a limit for the functor F . We show that
(Z, µi) is a colimit for the functor F op : Iop → Cop. For every i ∈ I, we have µi : Z → F (i)
and so µi : F (i) → Z is a morphism in Cop. Also for any f : j → i in Iop, we have that the
diagram below on the left commutes in C since (Z, µi) is a cone for F . Hence the diagram
below on the right commutes in Cop.

Z Z

F (i) F (j) F (i) F (j)

µi

F (f)

µj µi µj

Ff

Thus, (Z, µi) is a co-cone for F op : Iop → Cop. To show it is a colimit of F op, suppose (W,ψi)
is any other co-cone of F op. Then (W,ψi) will be a cone for F and so there exists a unique
map k : W → Z such that for any i ∈ I, we have the diagram below on the left commutes
in C. Hence, the diagram below on the right commutes in Cop.

W W

Z Z

F (i) F (i)

µi

ψi

k

µi

k
ψi

The uniqueness of k follows from the uniqueness of k. Thus, (Z, µi) is a co-limit of F op in
Cop.

Definition 2.42. We say that a category C has limits of shape I if a limit exists for each
functor M : I → C.
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Definition 2.43. We say that a category C has co-limits of shape I if a co-limit exists for
each functor M : I → C.

Definition 2.44. Let (C, µi) be a limit for a functor M : I → C. We say that this limit
is preserved by a functor F : C → D if (F (C), F (µi)) is a limit for FM : I → D in D.
We say that F : C → D preserves limits of shape I if it preserves any limit for any functor
M : I → C

Definition 2.45. Let (C, µi) be a co-limit for a functor M : I → C. We say that this
co-limit is preserved by a functor F : C → D if (F (C), F (µi)) is a co-limit for FM : I → D
in D. We say that F : C → D preserves co-limits of shape I if it preserves any co-limit for
any functor M : I → C

13



3 Representable Functors

As a preview of the upcoming section, we first take a look at the following functor:
O : Topop → Set that sends a space X to the set of opens in X, and a continuous map
f : X → Y to O(f) : O(Y ) → O(X), which sends an open set Z in Y to f−1(Z) in O(X).
Define the Sierpinski space to be the topological space S = {0, 1} with the opens being ϕ, S
and {1}.
Let Z be any topological space and U ⊂ Z an open subset. The function fU : Z → S is
defined such that

fU(x) =

{
0, x /∈ U

1, x ∈ U

is a continuous map associated to U ; conversely, to a continuous f : Z → S we associate the
open subset Uf := f−1({1}). This implements a natural bijection O(Z) ∼= Top(Z, S), where
O(Z) represents the sets of opens in Z and Top(Z, S) denotes the set of continuous maps
from Z to S.
Furthermore the Sierpinski Space is the only topology (up to homeomorphism) on the
two-point set S such that the set of opens in a topological space Z is in bijective
correspondence with Top(Z, S).
Suppose we endow S = {0, 1} with the discrete topology. Let Z be a topological space such
that U ⊂ Z is open but Z \ U is not open. Consider the function fU as described above.
Then fU is not continuous since Z \ U is not open in Z. Thus, O(Z) is not in bijection with
Top(Z, S). If instead we put the indiscrete topology on S = {0, 1}, then the set O(S) has
only two elements but every function from S → S is continuous and so the set Top(S, S)
has 4 elements.
What we have shown is that the Sierpinski topology is the only topology that can be put on
a two-point set space such that the set of continuous functions from any topological space
Z to S is in bijection with the opens in Z. In fact, we can say something stronger using the
Yoneda Lemma – that the Sierpinski space is the only space (up to homeomorphism) with
this property.
To summarise, we see that the functor O amounts to a functor specifying morphisms into a
“unique” representing object (the Sierpinski Space). As we shall see, this is part of a general
phenomenon.

3.1 Presheaves and copresheaves

Definition 3.1 (Presheaf). Let C be a category. A presheaf on C is a functor X : Cop →
Set. The category of presheaves is the functor category [Cop,Set] (which has natural
transformations between presheaves as morphisms).

Notation 3.2. There are multiple notations for the category of presheaves, namely Ĉ,
PSh(C), [Cop,Set], and SetC

op

. Ĉ is a convenient shorthand, but in some contexts it is
clearer to recognise it as a functor category (i.e. when comparing it to SetC).

This is a rather compact definition of presheaves, making use of the concepts of functors,
natural transformations and the opposite category, so it is worth giving an equivalent
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unpacked presentation. A presheaf X• on C consists of a C-indexed family of sets {XC}C∈C
(XC corresponds to F (C)) and a right-action on these sets given by morphisms of C. The
action of a morphism f : D → C in C on the presheaf is a function

XC XD

x x · f

where x · f is called the restriction of x along f . This right-action must satisfy x · 1C = x

and (x · f) · g = x · (fg) for E g−→ D
f−→ C. We call x · f the restriction of x along f .

This right-action and its axioms is a rephrasing of the morphism conditions for functors
F : Cop → Set, where x · f is notation for F (f)(x). Note the contravariance of the functor is
why we phrase it as a right-action, so that the law F (fg)(x) = F (g)(F (f)(x)) is naturally
suggested in (x · f) · g = x · (fg).

Notation 3.3. When working with multiple presheaves, we can use a subscript in x ·X f to
make the presheaf explicit, however it is better in some contexts to leave this implicit. The
function F (f), (which is the function XC → XD sending x to x · f) can be written f ∗, where
the upper-star is a conventional reminder of the contravariance of the functor F (f∗ is used
when a covariant-functor is applied to f).

We describe morphisms of presheaves in this notation. A morphism of presheaves η : X• → Y•
is a family of functions {ηC : XC → YC} which respects the restriction operation, i.e. for
f : D → C and x ∈ XC , ηD(x ·X f) = ηC(x) ·Y F . As a commutative diagram:

x XC YC ηC(x)

x · f XD YD ηC(x) · f

f∗

ηC

f∗

ηD

(1)

Definition 3.4 (Co-presheaf). A co-presheaf is a functor F : C → Set and the category of
co-presheaves is the functor category [C,Set] (also written SetC). It is the dual notion of
presheaves: a co-presheaf on C is a presheaf on Cop and a presheaf on C is a co-presheaf on
Cop.

Example 3.5. Let C be a locally-small category. An object C of C induces a presheaf
Hom(−, C) and a co-presheaf Hom(C,−). The presheaf sends an object D of C to the set
Hom(D,C) and a morphism f : D → D′ to the operation of pre-composition by f

Hom(D′, C) Hom(D,C)

e e ◦ f

(in the right-action notation, e · f := e ◦ f). Similarly, Hom(C,−) sends D to Hom(C,D)
and a morphism f : D → D′ to the operation of post-composition by f

Hom(D,C) Hom(D′, C)

e f ◦ e
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These are easily verified as functors using the axioms for composition in C. In fact, these
functors can be derived from the functor Hom : Cop × C → Set (see Theorem 2.26) by
precomposing with functors that fix the first/second object.

Cop Cop × C Set

C Cop × C Set

(−,C) Hom

(C,−) Hom

Definition 3.6. We call Hom(−, C) the functor co-represented by C and Hom(C,−) the
functor represented by C. A functor F : Cop → Set which is naturally isomorphic to
Hom(−, C) for some object C is called co-representable and we call C a co-representative of
F . Likewise, a functor G : C → Set is called representable if it is naturally isomorphic to
Hom(C,−) for some object C, and we call C a representative of G.

Since we can typically infer the appropriate variance of the functor, we can drop the
“co”-distinction and use representable and representative when speaking about both
covariant and contravariant functors.

Example 3.7. Consider the forgetful functor U : Grp → Set. Any group homomorphism
f : Z → G is determined uniquely by the value of f(1). Thus, we have that the setGrp(Z, G)
is in bijection with the set G. The bijection is natural in G and thus we have that the functor
U is naturally isomorphic to the functor Grp(Z,−) and is thus a representable functor with
representative Z.
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4 The Yoneda Lemma

The Yoneda Lemma, stated and proved below, is enabled by the fact that elements of the
presheaf Hom(−, C) are morphisms in C, so we can restrict along them in the presheaf.
Concretely, f ∈ Hom(D,C) is a morphism f : D → C, and restriction along f in Hom(−, C)
is the map (−)◦f : Hom(C,C) → Hom(D,C). The category axioms guarantee the existence
of at least one element of Hom(C,C), the identity, and we find that 1C ◦f = f ∈ Hom(D,C).
This means that the representable presheaf Hom(−, C) is highly-degenerate, in the sense that
any element of any set in the presheaf can be written as the restriction of the identity along
that element.

h ∈ Hom(A,C) k ∈ Hom(B,C)

1C ∈ Hom(C,C)

g ∈ Hom(C,C) f ∈ Hom(D,C)

(−)◦g

(−)◦h (−)◦k

(−)◦f

The Yoneda Lemma amounts to the fact that natural transformations between presheaves
must be compatible with their restriction operations, i.e. restricting before or after
transforming between presheaves yields the same result (see (1)). Thus for natural
transformations out of Hom(−, C), the image of 1C determines the image of all other
elements.

Theorem 4.1 (Yoneda Lemma). Let C be a small category, C ∈ C and F : Cop → Set a
presheaf. There is a bijection

ΦC,F Nat(Hom(−, C), F ) F (C)

α αC(1c).

:
∼=

Proof. First note that the map is well-defined, since such a natural transformation α at C is
a function between sets αC : Hom(C,C) → F (C), which we can apply to the identity on C.
For injectivity, we prove that the maps αD : Hom(D,C) → F (D) can be recovered from
knowing only αC(1C). Let D ∈ Obj(C) and f ∈ Hom(D,C). The previous remark identifies
that f = 1C ◦ f = Hom(−, C)(f)(1C), and naturality of α forces the following diagram to
commute.

1C Hom(C,C) F (C)

f Hom(D,C) F (D)

(−)◦f

αC

F (f)

αD

Thus we can compute αD(f) = F (f)(αC(1C)), and therefore any other natural
transformation which agrees with α on 1C must agree with α everywhere.
For surjectivity, we can invert this process, using the diagram to extend a given choice 1C 7→
a ∈ F (C) to a natural map, i.e. αD(f : D → C) := F (f)(a). Naturality must be verified
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with respect to any morphism g : D′ → D (not just morphisms into C). This amounts to
(contra) functoriality of F , since αD′(f ◦ g) = F (fg)(a) = Fg(Ff(a)) = Fg(αD(f)). The
relevant naturality square is the middle square below (the upper and lower squares define
αD and αD′ .

1C Hom(C,C) F (C) a

f Hom(D,C) F (D) F (f)(a)

fg Hom(D′, C) F (D′) F (fg)(a)

1C Hom(C,C)) F (C) a

(−)◦f

αC

F (f)

αD

(−)◦g F (g)

αD′

(−)◦fg

αC

F (fg)

Remark 4.2. This bijection is not simply a coincidence of cardinality, but a prescribed
assignment Nat(Hom(−, C), F ) → F (C) parametrised by a choice of a presheaf F and an
object C ∈ C. The full statement of the Yoneda Lemma identifies that this parametrised
family of maps is natural in the choice of C and F , meaning that morphisms f : C → C ′

and natural transformations η : F ⇒ G induce commutative diagrams relating ΦC,F to ΦC′,F

and ΦC,G. To state this properly requires defining appropriate functors Cop × Ĉ → Set so
that ΦC,F becomes a natural isomorphism. We delay this until section 6, and in section 8
we demonstrate how this enables us to work with presheaves categorically.

Remark 4.3. The Yoneda Lemma given above is about functors Cop → Set (i.e.
contravariant functors from C to Set), but we can use duality to conclude the corresponding
statement for covariant functors C → Set. Replacing C by Cop, the presheaf HomCop(−, C) :
(Cop)op → Set is really just HomC(C,−) : C → Set, since HomCop(D,C) = HomC(C,D) and
pre-composition in Cop is just post-composition in C. Similarly, a presheaf F : (Cop)op → Set
is just a co-presheaf F : C → Set.
We obtain what we refer to as the covariant Yoneda Lemma, and we can also refer to Theorem
4.1 as the contravariant Yoneda Lemma.

Corollary 4.4 ((Covariant) Yoneda Lemma). Let C be a small category, C ∈ C and F :
C → Set a co-presheaf. There is a bijection

ΦC,F Nat(Hom(C,−), F ) F (C)

α αC(1c).

:
∼=
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5 Examples of the Yoneda correspondence

We explore the correspondence Nat(Hom(−, C), F ) ∼= F (C) via examples. By specialising
the choice of a category C, we aim to recognise Nat(Hom(−, C), F ) as some familiar concept,
and then re-prove the correspondence to F (C) in this setting.
A natural way to seek out simplifications is to restrict to less-general categories. The
concept of a category can be seen as the common generalisation of monoids and pre-orders.
Specifically there are embeddings Mon ↪→ Cat and Pre ↪→ Cat realising a monoid as
a category with a single object, and a pre-order as an ordered category i.e., one with at
most one morphism between any two objects. Thus we begin by investigating presheaves on
monoids and pre-orders (considered as categories).

5.1 Presheaves on a monoid

Definition 5.1. Let M be a monoid with a binary operation written multiplicatively (i.e.
(m,n) 7→ mn). The category BM consists of a single object ∗, and the hom-set BM(∗, ∗) :=
M is defined to be the underlying set of the monoid. The identity Id∗ is defined to be the
identity e of the monoid, and composition is given by the associative monoid operation. It is
clear that this satisfies the definition of a category, since the category axioms reduce to the
same statements as the axioms for a monoid (with elements of the monoid corresponding to
the morphisms), when only one object is involved.

Example 5.2. Let M be a monoid regarded as an one-object category BM . A functor
F : BMop → Set consists of a set S which is the value of the functor at the unique object
of BMop, along with, for each morphism m ∈ BMop, a map F (m) : S → S satisfying the
functoriality axioms. For each m ∈ M and s ∈ S , we write F (m)(s) = s ·m, and so the
functor F amounts to a set S and a function f : S ×M → S that sends (s,m) to s · m
satisfying:

• s · e = s and

• s · (m1m2) = (s ·m1) ·m2 for every s ∈ S and m1,m2 ∈M .

Thus, a functor F : BMop → Set corresponds to a right M -set.

The category BMop has a unique object ∗ and so we only have one representable
functor from BMop, and we write it as M = BM(-, ∗) : BMop → Set which sends the
unique object ∗ to BM(∗, ∗) = M and a morphism m : ∗ → ∗ ∈ M to the function
fm :M →M that sends an element x ∈M to xm ∈M .

Let X be a right M -set. Under the identification of functors from BMop → Set as
described in the first paragaraph above, a natural transformation ϕ : M → X comprises of
a unique component ϕ :M → X, and the naturality condition gives that for any m : ∗ → ∗,
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we have that the following square commutes:

M X

M X

(−)·m

ϕ

ϕ

(−)·m

where the vertical maps denotes the right-action of m in the respective M -sets.
Or in other words, for every x ∈ M , ϕ(xm) = ϕ(x) · m (such a map is called a map of
M -sets). Further, note that any such map α : M → X is uniquely determined by its value
on the identity e ∈ M . Since for any x ∈ M , α(x) = α(e · x) = α(e) · x. This gives us a
bijection between Nat(M,X) and the elements of X.

Next we prove that the bijection ϕX : Nat(M,X) → X(∗) which sends α : M → X
to α(e) ∈ X is natural in X i.e. if X,X ′ : BM op → Set and µ : X ⇒ X ′ a natural
transformation between them, then the following diagram commutes:

Nat(M,X) X(∗)

Nat(M,X ′) X ′(∗)

µ◦−

ϕX

ϕX′

µ(∗)

Let α :M → X be a map of M -sets. Then µ(∗) ◦ ϕX(α) = µ(∗) ◦ (α(e)) = µ(α(e)) and,
ϕX′(µ ◦ α) = µ(α(e)). This proves that the square above commutes.
Hence, in the case of diagrams indexed by a monoid BM , natural transformations whose
domain is a representable functor are determined by the choice of a single element. And the
element is obtained by evaluating the codomain functor at the representing object.

Remark: In fact a similar argument can be used to prove that the Yoneda Lemma holds
true for any one-object category. For example we can regard groups as small one-object
categories where each arrow has an inverse.

5.2 Presheaves on pre-ordered categories

For a set X, a preordering on X is a relation ⪯ on X which is reflexive and transitive, i.e.

(i) ∀x ∈ X, x ⪯ x (reflexivity)

(ii) ∀x, y, z ∈ X, x ⪯ y ∧ y ⪯ z ⇒ x ⪯ z (transitivity).

The pair (X,⪯) is called a preorder or a preordered set. The class of preorders can be
promoted to a category by considering order-preserving functions, i.e. a morphism f :
(X,⪯) → (Y,≤) of preorders is a function f : X → Y such that x ⪯ y ⇒ f(x) ≤ f(y)
(identities and composition are the same as in Set). It is trivial to check that identities are
order-preserving, and that the composition of order-preserving functions is order-preserving.
We call this category Pre.
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A category can be viewed as a generalisation of the notion of a preorder. We can view (X,⪯)
as a category, with Obj(X,⪯) := X, and for x, y ∈ X

Hom(X,⪯)(x, y) :=

{
{(x, y)} , x ⪯ y

∅ , otherwise.

The composition operation is given uniquely by (y, z) ◦ (x, y) = (x, z), and identities by
1x := (x, x). The reflexivity and transitivity axioms ensure that these are well-defined, and
that the associativity and identity axioms are respected. In fact this construction is part
of an embedding Pre ↪→ Cat, and this is the formal sense in which categories generalise
pre-orders.
We give an example of a presheaf on such a pre-order category, in the more typical scenario
where the ordering satisfies the stronger condition of being a partial-ordering, i.e. it is
anti-symmetric: ∀x, y ∈ X, x ⪯ y ∧ y ⪯ x⇒ x = y.

5.3 Presheaves on a topological space

Let X be a topological space, with topology T (X) ⊆ P(X). The topology T (X) inherits
the partial ordering ⊆ from P(X), and so T (X) can be regarded as a category by the
previous construction.

Definition 5.3. A presheaf on the topological space X is a presheaf F : T (X)op → Set on
the category T (X). Since a pair of opens (U, V ) determines at most one morphism U → V
in T (X), we write the action of F on such a morphism as F(U ⊆ V ).

Example 5.4. The prototypical example of such a presheaf is the functor Cts(−,R) (or
fix any other space in place of R). At the open set U , this is the set of continuous maps
f : U → R. The unique morphism for U ⊆ V corresponds to the restriction operation
Cts(V,R) → Cts(U,R) sending f : V → R to its restriction f |U : U → R.

Example 5.5. For an open set W , the representable presheaf hW : T (X)op → Set sends
U ⊂ W to a singleton set, and all other opens U (not a subset of W ) to the empty set. Thus
a natural transformation α : hW ⇒ Cts(−,R) is a family {fU}U of choices fU := αU(∗) ∈
Cts(U,R), satisfying (fV )|U = fV whenever U ⊆ V . Clearly this naturality condition can
be used to generate such a family from a single continuous map f : W → R by defining
fU := f |U , and we can recover the original map as fW = f |W = f . Thus we have a bijection

Nat(hW ,Cts(−,R)) Cts(W,R)

{fU}U fW .

In fact, this is precisely the bijective correspondence α 7→ αW (1W ) ∈ Cts(W,R) given by the
Yoneda Lemma.
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5.4 The category of directed multigraphs as a presheaf category

Let C be a category that has two objects which we denote by 0 and 1, and two non-identity
morphisms s, t : 0 → 1. We claim that the category of presheaves over C is the category of
directed multigraphs with loops.
Let G : Cop → Set be a functor. Then G takes objects of C to sets i.e. G(0) = V and
G(1) = E for arbitrary sets V and E. These sets will represent the vertices and edges of
our graph G, respectively.
G takes an arrow in C to a set function but since the functor is contravariant, we get two
functions: G(s) : G(1) = E → G(0) = V and G(t) : G(1) = E → G(0) = E. We interpret
G(s) as a function that takes an edge and gives its source vertex and G(t) as a function
that takes an edge and gives its target vertex.

Let G,H be two presheaves over C. A natural transformation η : G ⇒ H comprises
of two maps η0 : G(0) → H(0) and η1 : G(1) → H(1) such that the following squares
commute:

G(1) H(1) G(1) H(1)

G(0) H(0) G(0) H(0)

G(s)

η0

η1

H(s) G(t)

η1

H(t)

η0

Viewing G(0) and H(0) as the vertex set of graphs G and H respectively with edge set
G(1) and H(1) respectively, we get that the commutativity of the two squares above tell us
that under η0 the source and target of an edge e must be mapped to the source and target
of η1(e) respectively. Thus, a natural transformation η : G ⇒ H corresponds to a graph
morphism η : G → H whose action on the vertex set is given by η0 and its action on the
edge set is given by η1.

Since there are only two object in C, we have that there are only two representable
functors from Cop → Set, namely, C(−, 0) and C(−, 1). The first representable functor
C(−, 0), by our earlier correspondence, represents a graph G with only one vertex and no
edges. While the functor C(−, 1) represents the following directed graph H:

v0 v1

So, for any presheaf X over C, any natural transformation from C(−, 0) to X represents a
graph morphism between the graph G and the graph corresponding to X. Since G has only
one vertex and no edges, the set of graph morphisms from G to X will correspond bijectively
to the vertex set X(0) of X. Thus, we have Nat(C(−, 0), X) ∼= X(0). Similarly, the set of
graph morphisms from H to the graph X is in bijective correspondence to the set of edges
in X. So we get that Nat(C(−, 1), X) ∼= X(1). Thus, we have recognised why the Yoneda
Lemma holds for this presheaf category.
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6 The Yoneda Isomorphism

The Yoneda Lemma as stated in section 4 provides a parametrised family of bijections
between the sets Nat(Hom(−, C), F ) and F (C). However, this can be strengthened to an
isomorphism between two Set-valued functors, one producing the set Nat(Hom(−, C), F )
and the other producing F (C) when evaluated at C and F . In this section, we build the
necessary structure required to define these functors.

6.1 Constructions

The first construction corresponds to the product of categories.

Lemma 6.1. Let F : A → C, G : B → D be functors. Then there is a functor F × G :
A× B → C ×D defined by (F ×G)(A,B) = (F (A), G(B)) for objects and (F ×G)(f, g) =
(F (f), G(g)) for arrows.

Proof. First note that (F × G)(f, g) = (F (f), G(g)) : (F (A), G(B)) → (F (A′), G(B′)) has
the appropriate domain and codomain.

Now suppose we have a composition (A,B)
(fA,fB)−−−−→ (A′, B′)

(gA,gB)−−−−→ (A′′, B′′). Then
we have

(F ×G)((gA, gB) ◦ (fA, fB)) = (F (gA ◦ fA), G(gB ◦ fB))
= (F (gA) ◦ F (fA), G(gB) ◦G(fB))
= (F (gA), G(gB)) ◦ (F (fA), G(fB))
= (F ×G)(gA, gB) ◦ (F ×G)(fA, fB),

(F ×G)(IdA, IdB) = (F (IdA).G(IdB))

= (IdFA, IdGA)

= Id(FA,GA)

= Id(F×G)(A,B) .

which shows that F ×G is indeed a well-defined functor. This completes the proof.

The following lemma is useful in constructing functors.

Lemma 6.2. Suppose that C is some category. Then there is a functor S : C → C × C
defined by S(A) = (A,A) for objects and S(f) = (f, f) for arrows.

Proof. Let f : A → B be a C-arrow. Then (f, f) : (A,A) → (B,B), or equivalently

S(f) : S(A) → S(B). Let now A
f−→ B

g−→ C be C-arrows. Then we find

S(IdA) = (IdA, IdA)

= Id(A,A)

= IdS(A),

S(g ◦ f) = (g ◦ f, g ◦ f)
= (g, g) ◦ (f, f)
= S(g) ◦ S(f).

23



We see that S is indeed a well-defined functor.

We now get the following corollary.

Corollary 6.3. Let F : C → D, G : C → E be functors. Then there is a functor denoted
(F,G) from C to D × E defined by (F,G)(A) = (F (A), G(A)) on objects and (F,G)(f) =
(F (f), G(f)) on arrows.

Proof. The functor (F,G) is precisely the composition (F ×G) ◦ S.

Lemma 6.4. Let C,D be locally small categories. Then there is a functor denoted ev :
D×CD → C given on objects A by ev(C,F ) = F (C) and on arrows (f, η) : (A,F ) → (B,G)
by ev(f, η) = G(f) ◦ ηA = ηB ◦ F (f).

Proof. It is clear that ev respects domains and codomains. Let now (A,F )
(f,α)−−−→ (B,G)

(g,η)−−→
(C,H) be arrows in D × CD. Then A

f−→ B
g−→ C are arrows in D and F

α
=⇒ G

η
=⇒ H are

natural transformation between functors D → C. We now find

ev((g, η) ◦ (f, α)) = ev(g ◦ f, η ◦ α)
= H(g ◦ f) ◦ (η ◦ α)A
= H(g) ◦H(f) ◦ ηA ◦ αA
= H(g) ◦ ηB ◦G(f) ◦ αA
= ev(g, η) ◦ ev(f, α),

ev(Id(A,F )) = ev(IdA, IdF )

= F (IdA) ◦ (IdF )A
= IdFA ◦ IdFA
= IdFA

= Idev(A,F ) .

We see that ev is indeed a functor.

Recall from section 3 that any object C of a locally-small category C induces two functors
(co)-represented by C, namely Hom(−, C) : Cop → Set and Hom(C,−) : C → Set. In fact
the construction C 7→ Hom(−, C) (resp. C 7→ Hom(C,−)) can be expanded to a functor
C → SetC

op

(resp. Cop → SetC).

Notation 6.5. We introduce the notation hC := Hom(−, C) and hC := Hom(C,−), so that
we can disambiguate the functors h(−) and h

(−).

Lemma 6.6. Let C be a locally small category. Then there is a functor denoted by h(−) :
Cop → SetC which sends an object C to hC and an arrow f : A → B to the natural
transformation hf : hA ⇒ hB defined by (hf )C(g) = g ◦ f .

Proof. We first show that the arrow assignment is well-defined. Let f : A → B be
a Cop-arrow, C a C-object and let g ∈ hA(C) = HomC(A,C). Then f : B → A
and consequently h ◦ f : B → C so h ◦ f ∈ HomC(B,C) = hB(C). We see that
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(hf )C : HomC(A,C) → HomC(B,C) is well-defined for all C. It remains to prove naturality.
Let f : A → B be a Cop-arrow, let g : C → D be a C-arrow and finally let k ∈ Hom(A,C).
Then we find

(hB(g) ◦ (hf )C)(k) = hB(g)(k ◦ f) = g ◦ k ◦ f = (hf )D(g ◦ k) = ((hf )D ◦ hA(g))(k)

which proves naturality. This shows that the arrow assignment is well-defined and therefore
so is h(−) as a double assignment. It is clear that h(−) respects domains and codomains.

Let now A
f−→ B

g−→ C be Cop-arrows. Let D be a C-object. Let finally k ∈ Hom(A,D).
Then we find

(hg◦f )D(k) = (hf◦g)D(k) = k ◦ (f ◦ g) = (hg)D(k ◦ f) = ((hg)D ◦ (hf )D)(k) = (hg ◦ hf )D(k)

so hg◦f = hg ◦ hf . We see that h(−) is a indeed a functor.

In an analogous way we can also prove the following

Lemma 6.7. Let C be a locally small category. Then there is a functor denoted by h(−)

from C to Ĉ = SetC
op

which sends an object C to hC and an arrow f : A→ B to the natural
transformation hf = ((hf )C |C a C-object) : hA ⇒ hB defined by (hf )C(g) = f ◦ g.

The functor h(−) : C → SetC
op

is also known as the Yoneda embedding.

6.2 The covariant Yoneda Isomorphism

Let C again be a locally small category. In the preceding chapter we constructed a functor
ev from C × SetC to Set. We may now define a second functor I : C × SetC → Set by the
composition

C × SetC
(h(−))op×IdC−−−−−−−→ (SetC)op × SetC

Hom
SetC (−,−)

−−−−−−−−→ Set.

This functor I acts on objects (C,F ) as

I(C,F ) = (HomSetC(−,−) ◦ ((h(−))op × IdC))(C,F ) = HomSetC(−,−)(hC , F ) = Nat(hC , F )

and on arrows (f, η) : (A,F ) → (B,G) as

I(f, η)(α) = HomSetC(−,−)(hf , η)(α) = η ◦ α ◦ hf

for α : hA ⇒ F . The Yoneda Lemma precisely says that there is a natural isomorphism Φ
between these two functors.

Theorem 6.8 (Covariant Yoneda Isomorphism). Let C be a locally small category and let
ev, I be functors as above. Then there is a natural isomorphism Φ : I → ev given by
ΦC,F (α) = αC(IdC).
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Proof. The bijections ΦC,F are precisely those from section 4. It remains to show that the
collection Φ = (ΦC,F : Nat(hC , F ) → F (C) | (C,F ) ∈ C ×SetC) is a natural transformation.
Let (f, η) : (A,F ) → (B,G) be a C × SetC-arrow and α : hA ⇒ F a natural transformation.
Then

(ΦB,G ◦ I(f, η))(α) = ΦB,G(η ◦ α ◦ hf )

= (η ◦ α ◦ hf )B(IdB)

= (ηB ◦ αB ◦ (hf )A)(IdB)
= ηB(αB(IdB ◦ f))
= ηB(αB(f))

= ηB(F (f)(αA(IdA)))

= G(f)(ηA(αA(IdA)))

= (G(f) ◦ ηA)(ΦA,F (α))

= (ev(f, η) ◦ ΦA,F )(η)

which proves naturality of Φ. This completes the proof.

The result above has the following important corollary:

Corollary 6.9. Let C be a locally small category, C be some C-object and F : C → Set a
functor. Then there is a bijection ΦC,F : Nat(hC , F ) → F (C) given by ΦC,F (α) = αC(IdA).

6.3 The contravariant Yoneda Isomorphism

In the preceding chapter we saw the covariant version of the Yoneda Lemma. We will now
study the contravariant version. We again have the evaluation functor ev : Cop × SetC

op →
Set and a second functor J : Cop × SetC

op → Set defined by the compostion

Cop × SetC
op (h(−))

op×IdCop−−−−−−−−−→ (SetC)× (SetC)op
Hom

SetCop (−,−)
−−−−−−−−−→ Set

This functor J acts on objects (C,F ) as

J(C,F ) = Nat(hC , F )

and on arrows (f, η) : (A,F ) → (B,G) as

J(f, η)(α) = η ◦ α ◦ hf
for α : hA ⇒ F . We can now formulate the contravariant version of the Yoneda Lemma.

Theorem 6.10 (Contravariant Yoneda Isomorphism). Let C be a locally small category and
let ev, J be functors as above. Then there is a natural isomorphism Φ : J → ev given by
ΦC,F (α) = αC(IdC).

This version is proven similarly to the covariant version. It also has the following corollary:

Corollary 6.11. Let C be a locally small category, C be some C-object and F : Cop → Set
a a functor (i.e. a contravariant functor from C to Set). Then there is a bijection ΦC,F :
Nat(hC , F ) → F (C) given by ΦC,F (α) = αC(IdC).
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7 Applications

7.1 The Yoneda Embedding

Recall the functor h(−) : C → SetC
op

from section 6.1 which sends C to Hom(−, C). We prove

that this functor is an embedding of the category C inside the presheaf category Ĉ = SetC
op

.

Remark 7.1. Although h(−) : C → Ĉ and h(−) : Cop → Ĉop are dual to each-other, we focus
on h(−) since it embeds C, rather than the opposite category of C, however the dual results
of this section are still useful.

Proposition 7.2 (The Yoneda embedding). The functor h(−) : C → Ĉ is an embedding.

Proof. Recall that an embedding is a fully-faithful functor which is injective on objects. h(−)

is injective on objects, since if C ̸= D then 1C ∈ hC(C) but 1C ̸∈ hD(C), so hC and hD
are distinct presheaves. That h(−) is fully faithful is an immediate corollary of the Yoneda
Lemma (Theorem 4.1).
For objects C,D ∈ C, we must show that the map

C(C,D) Ĉ(hC , hD)

f hf := {g 7→ f ◦ g}

is a bijection (surjective = full, injective = faithful). Taking C := C,F := hD, the Yoneda
Lemma gives a bijection

ΦC,hD : Nat(hC , hD) hD(C)
∼=

But hD(C) = C(C,D) and Nat(hC , hD) = Ĉ(hC , hD), and this is precisely the inverse of the
first map, since ΦC,hD(hf ) = (hf )1C (1C) = f ◦ 1C = f .

Corollary 7.3. Let C,D be objects in a locally-small category C. Then C ∼= D in C if and
only if C(−, C) ∼= C(−, D) in Ĉ.

Proof. Fully faithful functors preserve and reflect isomorphisms (see 2.14), so an isomorphism
f : C → D induces an isomorphism hf : C(−, C) ∼= C(−, D) and vice versa.

Corollary 7.4. Let C,D be objects in a locally-small category C. Then C ∼= D in C if and
only if C(C,−) ∼= C(D,−) in Ĉ.

Proof. This is the dual statement of the previous corollary (apply the previous corollary to
Cop, or redo the proof using the covariant Yoneda Lemma).

We can state these corollaries without relying on the definitions of (co)-presheaves.

Corollary 7.5. Let C be a locally-small category and X, Y objects in C. The following are
equivalent

(i) X ∼= Y
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(ii) There is a family of bijections ΦZ : C(Z,X)
∼=−→ C(Z, Y ) which is natural in Z, i.e. if

f : Z → Z ′ is a morphism in C, the following diagram commutes

C(Z ′, X) C(Z ′, Y )

C(Z,X) C(Z, Y )

ΦZ′

(−)◦f (−)◦f

ΦZ

(iii) There is a family of bijections ΨZ : C(X,Z)
∼=−→ C(Y, Z) which is natural in Z, i.e. if

f : Z → Z ′ is a morphism in C, the following diagram commutes

C(X,Z) C(Y, Z)

C(X,Z ′) C(Y, Z ′)

ΨZ

f◦(−) f◦(−)

ΨZ′

Proof. By proposition 2.32, a natural transformation between functors (in this case C(−, X)
and C(−, Y )) is an isomorphism if and only if it is a point-wise isomorphism (in this case,
each component is a bijection between sets, since the target category is Set). Thus, the
condition (ii) (resp. (iii)) is just stating that there is an isomorphism C(−, X) ∼= C(−, Y )
(resp. C(X,−) ∼= C(Y,−)

Remark 7.6. This corollary can be read as saying that objects are determined
up-to-isomorphism by the morphisms into or out of them. This is a manifestation of a
core idea in category theory, that kinds of mathematical objects should be understood in the
context of all the other mathematical objects of that kind. Two mathematical objects are
isomorphic if and only if they play the same role in the appropriate category. For example,
the role of the group Z in the category of abelian groups is that it represents the forgetful
functor U : Grp → Set, meaning that Hom(Z, G) ∼= U(G) for every abelian group G, and
this bijection is natural in G. Any other abelian group H with this property is isomorphic
to Z, since Hom(Z,−) ∼= U ∼= Hom(H,−) and Corollary 7.5 implies they are isomorphic.
This is why the Yoneda Lemma is sometimes referred to as the fundamental theorem of
category theory.

Example 7.7. Let k be an infinite field and denote byVectfdk the category whose objects are
finite dimensional vector spaces over k and whose arrows are k-linear maps. Recall that two
objects in Vectfdk are isomorphic if and only if they have the same dimension over k. Now

let V , V ′ be two objects of Vectfdk such that 0 < dimkV < dimkV
′. For any other object W

of Vectfdk , we have that there exists a bijection between Vectfdk (V,W ) and Vectfdk (V ′,W ).
This is because if dimkW = 0, both these sets contain exactly one element, namely the linear
map that maps everything to zero. If dimkW > 0, we know that Vectfdk (V,W ) is in bijection
with the set of dimkV × dimkW matrices over k, which is in bijection with k(dimkV )(dimk).
But since k is infinite and the exponent is finite, we know from elementary set theory that
this is in bijection with k. We can argue analogously that Vectfdk (V ′,W ) is also in bijection
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with k. Recall that we assumed that dimkV < dimkV
′, so in particular V is not isomorphic

to V ′ in Vectfdk , while their hom sets are isomorphic in the category of sets for every W of

Vectfdk . This shows that the naturality condition in Corollary 7.5 is actually necessary.

Example 7.8. Let V,W be k-vector spaces and consider the following functor:
Bilin(V,W ;−) : V ectk → Set which sends a vector space U to the set of bilinear maps from
V ×W to U . A linear map f : U → U ′ is sent to f∗ : Bilin(V,W ;U) → Bilin(V,W,U ′)
which sends a bilinear map g : V ×W → U to the bilinear map f ◦ g : V ×W → U ′ in
Bilin(V,W ;U ′)
A representation of the functor Bilin(V,W ;−) is a k vector space V ⊗k W , the tensor
product of V and W . So the tensor product is defined by an isomorphism

V ectk(V ⊗k W,Z) ∼= Bilin(V,W ;Z) (2)

where the isomorphism is natural in Z.
Let ⊗ : V ×W → V ⊗k W be the image of the identity 1V ⊗k W under the isomorphism in
(2). The natural isomorphism above identifies a bilinear map f : V ×W → Z, with a linear
map f# : V ⊗kW → Z. By the naturality condition induced by f# : V ⊗kW → Z, we have
the following commutative diagram

V ectk(V ⊗k W,V ⊗k W ) Bilin(V,W ;V ⊗k W )

V ectk(V ⊗k W,Z) Bilin(V,W ;Z)

(f#)∗

∼=

∼=

(f#)∗

Tracing the identity 1V ⊗k W gives that the bilinear map f factors uniquely through the
bilinear map ⊗ along the linear map f#.

V ×W Z

V ⊗k W

⊗

f

f#

The defining universal property of the tensor product of V and W also supplies as with a
method for its construction. Suppose V ⊗kW exists and consider its quotient by the vector
space spanned by the image of the bilinear map − ⊗ −. We have that the quotient map
V ⊗k W → V ⊗k W/ < v ⊗ w > composed with the linear map −⊗− gives the zero map.
But the zero map V ⊗k W → V ⊗k W/ < v ⊗ w > also has this property, and so, by the
universal property of tensor product, the zero map and the quotient map should coincide.
Since the quotient map is surjective, we get that V ⊗k W is isomorphic to the span of the
vectors v ⊗ w modulo the bilinearity condition on −⊗−.

Proposition 7.9. For any k-vector space V , we have V ⊗k k ∼= V where k is viewed as a
k-vector space.

Proof. There exists an isomorphism between Bilin(V,k;Z) and V ectk(V, Z) which is natural
in Z. The isomorphism sends a k-linear map f : V → Z to the bi-linear map f# : V ×k → Z
defined by f#(v, α) = αf(v). Thus, we have

V ectk(V ⊗k k, Z) ∼= Bilin(V,k;Z) ∼= V ectk(V, Z)
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and the isomorphisms are natural in Z. So by Corollary 7.4, we get that V ⊗k k ∼= V .

7.2 The Cayley Theorem from the Yoneda Lemma

We saw earlier that we can regard a group G as a small one-object category BG where each
arrow is an isomorphism. The Cayley Theorem says that G is isomorphic to a permutation
group on G, i.e., a subgroup of the symmetric group on the underlying set of G. For a set
X, the symmetric group on X, written SX , is the set of all bijective functions f : X → X,
with binary operation given by composition.

Theorem 7.10 (Cayley). Let G be a group. Then G is isomorphic to a subgroup of SG.

Proof. Let BG be the category corresponding to G. Then BG has only object ∗ and the set
of arrows is equal to HomBG(∗.∗) = G. The Contravariant Yoneda Lemma now gives us a
bijection

Φ : Nat(h∗, h∗) → h∗(∗) = HomBG(∗, ∗) = G

given by Φ(η) = η∗(Id∗). Let now x ∈ G. Then, by the above, there is corresponding natural
tranformation ηx ∈ Nat(h∗, h∗). As BG has only a single object,ηx consists of a single map
fx = (ηx)∗ : h∗(∗) → h∗(∗). In particular, for x, y ∈ G with x ̸= y we have that fx ̸= fy as
otherwise (ηx)∗ = (ηy)∗,and since ∗ is the only object of BG,consequently ηx = ηy, which
contradicts Φ being a bijection. We now have an injection φ : G → SG given by φ(x) = fx.
By naturality of ηx : h∗ ⇒ h∗ we get that

h∗(∗) h∗(∗)

h∗(∗) h∗(∗)

h∗(y) h∗(y)

fx

fx

commutes for each y ∈ HomBG(∗, ∗) = G. That is, for z ∈ HomBG(∗, ∗) = G, we have

fx(z) ◦ y = h∗(y)(fx(z)) = fx(h∗(y)(z)) = fx(z ◦ y).

If we let z be the identity e ∈ G, we have

fx(y) = fx(e ◦ y) = fx(e) ◦ y = (ηx)∗(e) ◦ y = Φ(ηx) ◦ y = x ◦ y = x · y.

Let now x, y ∈ G and also w ∈ G. Then we find

(fx ◦ fy)(w) = fx(fy(w)) = fx(y · w) = x · (y · w) = (x · y) · w = fx·y(w).

We see that ϕ : G → SG : x 7→ fx is an injective group homomorphism. In particular we
have now that G is isomorphic to a subgroup of SG.
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7.3 Characterization of polynomials on rings

In this section we consider the categoryRing of rings (with identity). We adapt the final part
of [3]. For some ring R, we denote by R[X] the ring of formal polynomials with coefficients
in R. Then for P = r0X

0 + r1X
1 + ...+ rnX

n some element in Z[X], we have for each ring
R an interpretation PR, that is, a function R → R, not necessarily a homomorphism, which
sends x ∈ R to r0 ·1+r1 ·x+r2 ·x2+ ...+rn ·xn where r0 ·x denotes adding x to itself ri times,
so for example 0 ·x = 0 and 3 ·x = x+x+x. We first characterize the homomorphisms from
Z[X] to some ring R. We let U : Ring → Set be the forgetful functor that sends a ring R
to its underlying set and a ring homomorphism ϕ to its underlying function. We also denote
by πR,r : Z[X] → R the homomorphism that sends an element P ∈ Z[X] to the evaluation
of PR at the element r ∈ R.

Lemma 7.11. There is a natural isomorphism π : U ⇒ hZ[X] given by πR(r) = πR,r. The
inverse π−1 is given by π−1

R (φ) = φ(X).

Proof. Let for R a ring πR : R → hZ[X](R) = HomRing(Z[X], R) be a function defined as
above. We first show that πR is a bijection. Let φ : Z → R be a ring homomorphism. Let
r = φ(X). Then we have for P = r0X

0 + r1X
1 + ...+ rnX

n in Z that

φ(P ) = φ(r0X
0 + r1X

1 + ...+ rnX
n)

= φ(r0 · x0) + ...+ φ(rn ·Xn)

= r0 · φ(X0) + ...+ rn · φ(Xn)

= r0 · φ(1) + r1 · (φ(X))1 + ...+ rn · (φ(X))n

= r0 · r0 + r1 · r1 + ...+ rn · rn

= PR(r)

= πR,r(P ).

We see φ = πR,r = πR(r). This shows that πR is surjective. Let now r, s ∈ R with
πR(r) = πR(s). Then we have

r = (X)R(r) = πR,r(X) = (πR(r))(X) = (πR(s))(X) = πR,s(X) = (X)R(s) = s

which shows πR is injective, and consequently, bijective. We now show that the πR form a
natural transformation.
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Let φ : R → S be a ring homomorphism and let r ∈ R,P = r0X
0+r1X

1+ ...+rnX
n ∈ Z[X].

Then we have

(πS ◦ U(φ))(r)(P ) = πS(φ(r))(P )

= πS,φ(r)(P )

= PS(φ(r))

= r0 · (φ(r))0 + ...+ rn · (φ(r))n

= r0 · φ(r0) + ...+ rn · φ(rn)
= φ(r0 · r0 + ...+ rn · rn)
= φ(PR(r))

= φ(πR(r)(P ))

= (φ ◦ πR(r))(P )
= (hZ[X](φ) ◦ πR)(r)(P ).

This proves naturality. We conclude that we have a natural isomorphism π : U ⇒ hZ[X].
The form of the inverse is clear from the proof of surjectivity.

We now prove the following theorem using the Covariant Yoneda Lemma.

Theorem 7.12. There is a 1-1 correspondence between (necessarily class sized) collections
F = (FR|R a ring) of functions such that for each ring homomorphism ϕ : R → S we have
ϕ ◦ FR = FS ◦ ϕ as functions and elements P of Z[X]. In particular if P corresponds to the
collection F , then it is the unique element of Z[X] such that PR = FR for every ring R.

Proof. Let F be a collection as above. Then, for each ring homomorphism ϕ : R → S,
ϕ ◦ FR = FS ◦ ϕ as functions, i.e., the follow diagram commutes in Set.

R R

S S

FR

FS

U(ϕ)=ϕ ϕ=U(ϕ)

This says precisely that the collection F is a natural transformation U ⇒ U .

Let now π be as in the preceding lemma. We define a function Π : Nat(hZ[X], U) → Nat(U,U)
by Π(F ) = η ◦ π. Let η, ε be natural transformations U ⇒ U with Π(η) = Π(ε). Then we
have

η = η ◦ 1hZ[X] = η ◦ π ◦ π−1 = Π(η) ◦ π−1 = Π(ε) ◦ π−1 = ε ◦ π ◦ π−1 = ε ◦ 1hZ[X] = ε.

This shows that Π is injective. Let now F be a natural transformation U ⇒ U . Then we
have F ◦ π−1 ∈ Nat(hZ[X], U) and

Π(F ◦ π−1) = F ◦ π−1 ◦ π = F.
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We conclude that Π is a bijection and Π−1 is given by Π−1(F ) = F ◦ π−1.

The Covariant Yoneda Lemma now gives us another bijection Φ : Nat(hZ[X], U) →
U(Z[X]) = Z[X], given by Φ(η) = ηZ[X](1Z[X]). Note now that Φ ◦ Π−1 is a bijection
Nat(U,U) → Z[X]. This gives us our 1-1 correspondence. Let now F : U ⇒ U . Then we
have

(Φ ◦ Π−1)(F ) = Φ(F ◦ π−1) = (F ◦ π−1)Z[X](1Z[X]) = FZ[X](π
−1
Z[X](1Z[X])) = FZ[X](1Z[X](X))

For a ring R and r ∈ R we now get

((Φ ◦ Π−1)(F ))R(r) = (FZ[X](1Z[X](X)))R(r) = (FZ[X](X))R(r) = πR,r(FZ[X](X)).

By naturality of F , the above becomes

((Φ ◦ Π−1)(F ))R(r) = FR(πR,r(X)) = FR(r).

This shows that F corresponds to an element P of Z[X] such that PR = FR for each ring R.
By the 1-1 correspondence, P is unique with this property. This completes the proof.
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8 Constructions in the category of presheaves

In this section, we explore the structure of the category of presheaves, see how they naturally
solve representability problems such as the exponential object, and then explore an example
construction of exponentials in the presheaf category of graphs.

8.1 Working with presheaves

Many constructions in category theory, such as limits, colimits, adjunctions etc, involve
reasoning about diagrams. Since presheaves are set-valued, the first approach to reasoning
about presheaves, for example, verifying two natural transformations agree, is to calculate
that they agree pointwise (at every C ∈ C) by explicit equations (with many subscripts!).
We demonstrate how the naturality of the map ΦC,F in C and F allows us to reason at the

level of objects and morphisms of the presheaf category Ĉ.

Notation 8.1. In this section, we adopt the notation y for the covariant functor h(−) : C → Ĉ
sending C to Hom(−, C). Recall that this is the Yoneda embedding from Section 7.

First we provide a way to externalise the internal structure of a presheaf F : Cop → Set.
Naturality of ΦC,F in C says that Φ(−),F is a natural isomorphism between Nat(y(−), F ) :
Cop → Set and F : Cop → Set, i.e. these are the same presheaf up to the isomorphism given
by Φ(−),F . So not only can we identify elements of x ∈ F (C) with natural transformations

y(C)
x→ F , we can also identify the restriction F (f) : F (C) → F (D) (for a morphism

f : D → C) with pre-composition by y(f) (this is the action of Nat(y(−), F ) on morphisms).
This is expressed by the following commuting diagram.

α ∈ Nat(y(C), F ) F (C) ∋ x

α ◦ y(f) ∈ Nat(y(D), F ) F (D) ∋ F (f)(x)

(−)◦y(f)

ΦC,F

F (f)

ΦD,F

We take this isomorphism seriously by writing x for α, and since y is fully-faithful, we write
f for y(f). Now instead of saying F (f)(z) = x we can say this diagram commutes

y(C) F

y(D)

x

f z

The correspondence can be taken further by unfolding what it means to say that ΦC,F is
natural in F . This means that for fixed C, ΦC,(−) is a natural isomorphism between the
functors Nat(y(C),−) : SetC

op → Set and ev(C,−) : SetC
op → Set (the latter functor sends

the presheaf F to F (C)). Given a natural transformation η : F ⇒ G between presheaves,
these functors evaluated at η are the following functions (respectively).

η ◦ (−) : Nat(y(C), F ) → Nat(y(C), G)
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ηC : F (C) → G(C)

Thus we have a commuting diagram

α ∈ Nat(y(C), F ) F (C) ∋ x

ηα ∈ Nat(y(C), G) G(C) ∋ ηC(x)

η◦(−)

ΦC,F

ηC

ΦC,G

and under this correspondence, we can replace the statement ηC(x) = z by commutativity
of this diagram

y(C) F

G

x

z
η

In summary, the internal data of a presheaf can be described externally via morphisms SetC
op

from the representable presheaves, and the equality of elements of a presheaf after restriction
or applying a natural transformation, can be rephrased as commutativity of diagrams in
SetC

op

.

8.2 Exponential Objects

The concept of representability is widely re-usable and provides a framework for defining
many kinds of objects in a category. One such example is that of an exponential object.

Definition 8.2. Let C be a category with binary products and X, Y objects. Consider the
functor C(X×(−), Y ) : Cop → Set, which sends an object A to the hom-set C(X×A, Y ), and
a morphism f : A→ B to the operation of precomposition by (1X × f) : X × A→ X ×B.
An object is an exponential of X and Y if and only if it is a representative of the functor
C((−)×X, Y ). We denote such an object Y X .

Example 8.3. In the category of sets, Y X := {f : X → Y } represents the functor Set((−)×
X, Y ).

Proof. We must provide a natural isomorphism Set(−, Y X)
∼=−→ Set((−) × X, Y ). By the

Yoneda Lemma, natural transformations of this form are in bijection with elements of
Set(Y X × X, Y ). One such element is the evaluation function ev : Y X × X → Y , defined
ev(f, x) = f(x). The corresponding natural transformation is defined at a set Z as follows

Set(Z, Y X) Set(Z ×X, Y )

g ev ◦ (g × 1X)

αZ

(note that αY Z (1Y X ) recovers our chosen element ev, since ev ◦ (1Y X ×1X) = ev. To see that
this is a bijection, we define an inverse
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Set(Z ×X, Y ) Set(Z, Y X)

h α−1
Z (h)

α−1
Z

where α−1
Z (h) is defined α−1

Z (h)(z)(x) = g(z, x). Now we calculate

αZ(α
−1
Z (h)) = (ev ◦ (α−1

Z (h)× 1X))(z, x)

= ev(α−1
Z (h)(z), x)

= α−1
Z (h)(z)(x)

= h(z, x)

So the composition Set(Z ×X, Y ) → Set(Z, Y X) → Set(Z ×X, Y ) is the identity. For the
other composition, we compare a given function g : Z → Y X to α−1

Z (αZ(g)). We find that

α−1
Z (αZ(g)) = α−1

Z (ev ◦ (g × 1X))(z)(x)

= (ev ◦ (g × 1X))(z, x)

= ev(g(z), x)

= g(z)(x)

so we recover the behaviour of g. If αZ(g) = h we say that g is the exponential transpose of
h. In a computer science context, g is referred to as the curried form of the function h.

8.3 Exponentials in presheaf categories

Not all categories have exponential objects, so for a given category, one must first determine
an object E which is a solution to the representation problem:

Hom(−, E) ∼= Hom((−)×X, Y ).

The situation is inverted in a presheaf category ŷ, where the representation problem actually
provides a definition of the presheaf that solves it.
Suppose X and Y are presheaves, and we want to find a presheaf that represents the functor
Ĉ((−)×X, Y ) : (Ĉ)op → Set. This is a presheaf on ,̂ but we can obtain a presheaf on C by
precomposing with the Yoneda embedding

Cop (Ĉ)op Set
y Ĉ((−)×X,Y )

This is the presheaf of sets {Ĉ(y(C)×X, Y )}C∈C with restriction operation given by e · f =

e ◦ (y(f)× 1X), for e ∈ Ĉ(y(C)×X, Y ) and f : D → C.

Proposition 8.4. The presheaf Y X := {Ĉ(y(C) × X, Y )}C∈C is a representative of the

functor Ĉ((−)×X, Y ), and is therefore an exponential of X and Y

The proof of this fact requires some additional facts about presheaves and properties of the
functor Ĉ((−) ×X, Y ), but first note that the natural isomorphism α = (αZ : Ĉ(Z, Y X) →
Ĉ(Z×X, Y ))Z∈Ĉ is automatically given by the Yoneda Lemma when Z is representable, since

the Yoneda Lemma says Ĉ(y(C), Y X) ∼= Y X(C), which we defined to be Ĉ(y(C)×X, Y ))Z .
To extend this isomorphism to arbitrary presheaves we need the following important facts.
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Lemma 8.5. Any presheaf X : Cop → Set can be written as a colimit of representable
presheaves, i.e., there is a diagram F : I → C such that X is the colimit of the composite
diagram y ◦ F : I → Ĉ.

Lemma 8.6. Let D be any category, and D an object of D. The hom-functor D(−, D) :
Dop → Set preserves limits, and if D has binary products, the functor (−) × D : D → D
preserves colimits.

We defined what it means for functors to preserve limits and colimits in the Basics section.
Proof of these lemmas can be found in [4]. We can now complete the proof.

Proof. Suppose Z is a colimit of the diagram y ◦F : I → Ĉ, which consists of representable
presheaves y(Ci) for i ∈ I. Now using that Ĉ(−, Y X) : Cop → Set preserves limits, we

have a natural isomorphism Ĉ(Z, Y X) ∼= Ĉ(colimI y(Ci), Y
X) ∼= limI Ĉ(y(Ci), Y X). Here we

have used that a limit in (Ĉ)op is precisely a colimit in Ĉ by the duality in the definitions of

limit and colimit. This is why the colimit inside the Hom-functor Ĉ(−, Y X) becomes a limit
outside of it.
We continue this chain of natural isomorphisms by noticing we have reduced to the
representable case, after which we reach Ĉ(Z×X, Y ) by repeatedly applying preservation of
limits/colimits.

lim
I

Ĉ(y(Ci), Y X) ∼= lim
I

Ĉ(y(Ci)×X, Y )

∼= Ĉ(colim
I

(y(Ci)×X), Y )

∼= Ĉ(colim
I

y(Ci)×X, Y )

∼= Ĉ(Z ×X, Y )

8.4 Exponentials in the category of Graphs

In section 5.4, we saw that the category of directed multigraphs can be realised as a presheaf
category. We apply the results of the previous section to obtain from graphs G and H the
appropriate definition for the exponential graph HG.

Notation 8.7. We write Graph := [2op,Set] for the category of presheaves on the category
2 consisting of two objects 0, 1 and two non-identity morphisms s, t : 0 → 1. A directed
multi-graph G, regarded as a presheaf G ∈ Graph, consists of a vertex set G0 := G(0) ∈ Set
and an edge set G1 = G(1) ∈ Set. We write s, t : G1 → G0 for the two restriction functions
given by the non-identity morphisms s, t : 0 → 1 in the category 2, which send an edge to its
source and target vertex respectively. We write u for the unique vertex of the representable
graph y(0) := Hom2(−, 0) and we label the vertices and edges of y(1) := Hom2(−, 1) as
below:

v0 v1
e
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We describe products of graphs.

Definition 8.8. Let G,H be graphs. The product graph (G×H) has vertex set (G×H)0 :=
G0 ×H0 and edge set (G ×H)1 = G1 ×H1. The source and target functions are given by
s(e1, e2) = (se1, se2), and t(e1, e2) = (te1, te2)

The correctness of this definition (as a limit in Graph) is a special case of the fact that
functor categories of the form [C,D] have whatever limits and colimits that exist in the
target category D, and are computed “pointwise”. For presheaves, this means that for a
diagram F : I → Cop, limI F (i) is the presheaf of sets, defined at C as limI F (i)(C). For a
proof of this fact see Section 6.2 of [4].

Lemma 8.9. A morphism of graphs f : G → H is a pair f0 : G0 → H0 (the vertex map)
and f1 : G1 → H1 (the edge map) such that f0(se) = sf1(e) and f0(t(e)) = tf1(e).

Proof. This is a restatement of the data and conditions of a natural transformation between
G and H, as given in section 5.4.

Definition 8.10. Let G,H be graphs. The exponential graph HG has vertex set
(HG)0 := Set(G0, H0), the set of functions between the vertex sets and edge set (HG)1 :=
Graph(y(1)×G,H). Let f : y(1)×G→ H be morphisms of graphs. The source map sends
f to the function on vertices s(f) ∈ Set(G0, H0) given by s(f)(v) = f0(v0, v). Similarly
t(f)(v) = f0(v1, v).

Theorem 8.11. The graphHG is an exponential object forG andH in the sense of definition
8.2, and thus there is a natural bijection Graph(K,HG) ∼= Graph(K×G,H) for all graphs
K.

Proof. We show that the exponential HG as defined is equivalent to the construction given
for a general presheaf in the previous section, which would define (HG)0 = Graph(y(0) ×
G,H) and (HG)1 = Graph(y(1) × G,H). Observe that the graph y(0) has no edges, so
(y(0)×G)1 = (y0)1 ×G1 = ∅ ×G1 = ∅, and therefore a morphism of graphs y(0)×G→ H
is just the data of a function on vertices G0 → H0.
From the presheaf-exponential construction, the source map Graph(y(1) × G,H) →
Graph(y(0) × G,H) sends f to the graph morphism f ◦ (y(s) × 1G). Recall that u is
our relabelling of the identity morphism Id0 : 0 → 0 in (y(0))(0) = 2(0, 0), so for a vertex
pair (Id0, v) ∈ (y(0)×G)0,

(f ◦ (y(s)× 1G))0(Id0, v) = f0(s, v)

but s ∈ (y(1))0 is the vertex of y(1) we called v0. So the corresponding function G0 → H0

is indeed given by s(f)(v) = f0(v0, v). The same proof shows the correctness of the target
map, with t in place of s.

Example 8.12. We give an example to illustrate the edges of the exponential graph HG.
Take G to be a graph with a single edge c and vertices a, b. Then G× y(1) has four vertices
(a, v0), (b, v0), (a, v1), (1, v1) and a single edge (c, e) from (a, v0) to (b, v1). Then an edge
f ∈ Graph(G× y(1), H) can be visualised as a subgraph of H of this shape.
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(G × y(1) ) H

a (a, v0) (a, v1)

v0 v1

b (b, v0) (b, v1)

f

c
(e,c)e

Although this is the correct notion of exponential for Graph as presented, there is evidently
a lack of structure in this example. For this choice of G, graph morphisms G→ H correspond
to edges in H, so we would expect edges in the exponential HG to give a notion of edges
“between” edges, however there is no constraint on the choices of (a, v1) and (b, v0), and only
a single H-edge that relates the four vertices.
The situation can be improved by modifying the underlying category 2 to include an extra
non-identity morphism d : 1 → 0, with composition defined ds = dt = Id0.

0 1d
s

t

This has the effect of adding “degenerate edges” to graphs such that for every vertex v, there
is a new edge d(v) with s(d(v)) = t(d(v)) = v. Here we use d : G0 → G1 for restriction along
the morphism d. Importantly y(0) now has a single vertex u and a single edge d(u) from
u to u, so G × y(0) ∼= G, rather than being G with no edges. Therefore the vertices of the
exponential are in bijection with graph morphisms f : G → H (not just maps of vertices).
With naturality one can show that f1(d(v)) = d(f0(v), and thus including degenerate edges
does not fundamentally change the collection of graph morphisms from G to H.
We repeat the previous example for this modified presheaf category of graphs with
degenerates.

Example 8.13. Let G to be a graph with degenerates, with vertices a, b and
edges d(a), d(b), c. Then G × y(1) has four vertices (a, v0), (b, v0), (a, v1), (1, v1) and
(non-degenerate) edges (c, dv0), (c, dv1), (da, e), (db, e), (c, e). Then an edge f ∈ Graph(G×
y(1), H) can be visualised as a subgraph of H of this shape.

(G × y(1) ) H

a (a, v0) (a, v1)

v0 v1

b (b, v0) (b, v1)

f

c (c,dv0)

(da,e)

(e,c)
(c,dv1)

e

(db,e)

It is evident that this a stronger notion of an edge-between-edges. Observe that s(f) is the
left vertical edge of the square, and t(f) is the right vertical edge.
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Remark 8.14. This modification of the underlying category can be continued to add
“higher-dimensional” sets to the presheaf category. For example, we can add a third object
2 to introduce the set G2 of triangles, along with maps between 1 and 2 to relate each
triangle to its three directed edges (much like edges are related to their vertices). Then a
fourth for tetrahedrons, etc... The full realisation of this idea to arbitrary dimensions is given
by using the simplex category ∆, with finite ordinals [n] := {0, 1, 2, . . . , n} as objects and
monotone-maps (non-decreasing) as morphisms. The presheaf category on ∆ is called the
category of simplicial sets, sSet, is a discrete/categorical setting for homotopy theory. It is
strongly related to the homotopy theory of CW-complexes, in fact, the notion of edge between
graph-morphisms in the exponential graph HG as a morphism f : G × y(1) → H is closely
related to the topological notion of homotopy between continuous maps of 1-dimensional
CW-complexes (this correspondence is called the geometric realisation). For more about
simplicial sets, see [5].
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9 Abelian Categories and Mitchell’s Embedding

Theorem

In this section we will give a short introduction to the theory of abelian categories and
showcase yet another application of the Yoneda Lemma and the Yoneda Embedding. This
will culminate in a sketch of the proof of the Mitchell Embedding Theorem. This theorem
roughly states that every abelian category can be fully faithfully embedded into the category
R-mod, where R-mod is the category of (left) R-modules over a certain ring R. To do this
we will prove a slightly altered version of the Yoneda Lemma, which we will call the Additive
Yoneda Lemma. We are going to define what an abelian category is in multiple steps and we
encourage the reader to keep prototypical examples in mind throughout this process. But
what are examples of abelian categories? An informal way of defining an abelian category
is a category where “it makes sense to talk about notions such as (co)homology”. The most
straightforward category for this is Ab, the category of abelian groups. More generally
one can also think about the category R-mod, for some ring R. Of course Ab can be
realized as Z-mod. To help motivate the abstract and categorical definitions, we will show
to which familiar and algebraic notions they correspond in Ab. We start with the notion of
a preadditive category.

9.1 Preadditive Categories

Definition 9.1. A category C is called preadditive if for all objects C,D of C, C(C,D) is
an abelian group and for all f, g ∈ C(C,D), h ∈ C(D,E) and h′ ∈ C(E,C), where E is an
object in C, we have that h ◦ (f + g) = h ◦ f + h ◦ g and (f + g) ◦ h′ = f ◦ h′ + g ◦ h′. Here +
denotes the group operation in all of the hom sets. The identities of such groups are denoted
by 0 and we will also call them zero morphisms.

The categoryAb is an example of a preadditive category. Given two abelian groupsG andH,
the hom set Ab(G,H) has a natural abelian group structure by adding two homomorphisms
pointwise. The homomorphism that sends every element of G to the identity of H is then
the identity of Ab(G,H). Since the collection of arrows between two objects in a preadditive
category is a group, it can also be thought of as a set. So we see that a preadditive category is
in particular locally small. Also note that a preadditive category with one object is nothing
but a ring, similarly how we considered the one object category BG for a group G. The
multiplication in this ring is the composition of arrows and so it always has a multiplicative
identity, namely, the unique identity arrow.

Definition 9.2. Let C and D be preadditive categories. A functor F : C → D is called
additive if for any two objects C and D in C, the map C(C,D) → D(F (C), F (D)) : f 7→ F (f)
is a homomorphism of abelian groups.

Additive functors can be thought of as the “interesting” functors between preadditive
categories, since they preserve the group structure of the hom sets.

Lemma 9.3. For an object C in a preadditive category C, the Yoneda functor C(C,−) : C →
Ab is a well-defined and additive functor.
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Proof. By requiring the hom sets of C to have an abelian group structure, we ensure
that C(C,−) actually takes values in Ab. We get additivity from the fact that function
composition distributes over addition in a preadditive category.

Lemma 9.4. Let C be a preadditive category and A,B objects of C. For all arrows f ∈
C(A,B), we have that 0 ◦ f = 0 and f ◦ 0 = 0 for all relevant zero morphisms.

Proof. Suppose f ∈ C(A,B). For every zero morphism that can be precomposed with f , we
have that 0 ◦ f = (0 + 0) ◦ f = 0 ◦ f + 0 ◦ f , so subtracting 0 ◦ f from both sides gives that
0 ◦ f = 0. Similarly, f ◦ 0 = 0 for all zero morphisms that can be postcomposed with f .

Now we are ready to state and show equivalent of the Yoneda Lemma for preadditive
categories.

Proposition 9.5 (Additive Yoneda Lemma). Let C be a preadditive category, F : C → Ab
an additive functor and C an object of C. The set Nat(C(C,−), F ) has a natural abelian
group structure and the Yoneda map

Φ: Nat(C(C,−), F ) → Fc : α 7→ αC(IdC)

is an isomorphism of groups. This correspondence is also natural in C and F .

Proof. Note that since C is preadditive, C(C,−) is a functor from C to Ab. Given two
natural transformations α, β from C(C,−) to F , define for each object A of C an arrow
(α + β)A := αA + βA. This is well-defined since Ab is preadditive and we will show that
this defines a natural transformation from C(A,−) to F . Consider now two objects A,B of
C and an arrow f ∈ C(A,B). We see, using that Ab is preadditive and α and β are natural,
that

F (f)◦ (αA+βA) = F (f)◦αA+F (f)◦βA = αB ◦ (f ◦−)+βB ◦ (f ◦−) = (αB+βB)◦ (f ◦−).

This shows that the square

Nat(C(C,A), F ) F (A)

Nat(C(C,B), F ) F (B)

f◦−

αA+βA

αB+βB

F (f)

commutes and therefore α + β is a natural transformation from C(C,−) to F . We will now
show that this operation makes Nat(C(C,−), F ) into an abelian group. For each object A
of C define ωA as the identity of the group Ab(C(C,A), F (A)). By Lemma 9.4 we see that
ωB ◦ (f ◦ −) = 0 = F (f) ◦ ωA for every pair of objects A,B of C and arrow f ∈ C(A,B).
Therefore the diagram

Nat(C(C,A), F ) F (A)

Nat(C(C,B), F ) F (B)

f◦−

ωA

ωB

F (f)
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commutes and this shows that ω is an element of Nat(C(C,−), F ). From the definition we
see that ω+α = α+ω = α for every α ∈ Nat(C(C,−), F ). Next, given β ∈ Nat(C(C,−), F ),
define for each object A of C the arrow (−β)A as −βA. Note that this makes sense since βA is
an element of an abelian group and therefore has an additive inverse. For every pair of objects
A,B of C and arrow f ∈ C(A,B), we have that −βB ◦ (f ◦−)+βB ◦ (f ◦−) = 0◦ (f ◦−) = 0,
so −βB ◦(f ◦−) = −(βB ◦(f ◦−)) and similarly F (f)◦(−βA) = −(F (f)◦βA). The naturality
of β then gives that

−βB ◦ (f ◦ −) = −(βB ◦ (f ◦ −)) = −(F (f) ◦ βA) = F (f) ◦ (−βA).

Therefore the diagram

Nat(C(C,A), F ) F (A)

Nat(C(C,B), F ) F (B)

f◦−

−βA

−βB

F (f)

commutes and so −β is a natural transformation. By the definitions it follows that
β +−β = ω for every β ∈ Nat(C(C,−), F ). That the operation + is abelian follows directly
from its definition and so we may conclude that this operation makes Nat(C(C,−), F ) into
an abelian group.

Now define

Ψ: F (C) → Nat(C(C,−), F )

x 7→ (Ψ(x)A : C(C,A) → F (A) : f 7→ F (f)(x) | A ∈ Ob(C)).

To check that this is a well-defined map, we have to show that it takes values in
Nat(C(C,−), F ). Let x ∈ F (C), so for every object A of C we have to show that Ψ(x)A
is a group homomorphism. So suppose that A is an object of C and f, g ∈ C(C,A). Then
Ψ(x)A(f + g) = F (f + g)(x) and by the additivity of F and the pointwise addition of arrows
in Ab, we get that

F (f + g)(x) = (F (f) + F (g))(x) = F (f)(x) + F (g)(x) = Ψ(x)A(f) + Ψ(x)A(g).

So we see that Ψ(x)A is a group homomorphism and therefore an arrow in Ab. The proof
that Ψ(x) is a natural transformation is completely analogous to the proof of this in the
(covariant) Yoneda Lemma. Therefore Ψ is well-defined. Now let α, β ∈ Nat(C(C,−), F ), so

Φ(α + β) = (αC + βC)(IdC) = αC(Id(C)) + βC(IdC) = Φ(α) + Φ(β),

and therefore Φ is a group homomorphism. The proof that Ψ is an inverse of Φ is also
completely analogous to the proof of this in the (covariant) Yoneda Lemma. This shows
that Φ is a group isomorphism. The proof of the naturality in C and F is again analogous
to the proof of this in the (covariant) Yoneda Lemma.
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Corollary 9.6 (Additive Yoneda Embedding). Let C be a preadditive category. The functor
y : Cop → AbC, which maps an object C to its representable functor C(C,−) and an arrow f
to the natural transformation that precomposes with f in each component, is fully faithful.

Proof. The proof is completely analogous to the proof of the original Yoneda Embedding,
Proposition 7.2.

9.2 Additive and Abelian Categories

Definition 9.7. An object that is both initial and terminal in a category C is called a zero
object. If such a zero object exists, it is trivially unique up to unique isomorphism and we
will also denote it by 0.

Definition 9.8. A category C is additive if it is preadditive, has a zero object and every two
objects have a product.

In Ab, the trivial groups are exactly the zero objects, since there is always a unique way to
define a group homomorphism to and from a trivial group.

Definition 9.9. Let C be an additive category, C and D objects in C and f : C → D an
arrow. A kernel of f is an object ker(f), together with an arrow fk : ker(f) → C, such that
f ◦ fk = 0 and for any other arrow g : E → C such that f ◦ g = 0, there exists an unique
arrow h : E → ker(f) such that the diagram

C

ker(f) D

E

f
fk

0

0

g

h

commutes. Similarly, a cokernel of f is an object coker(f), together with an arrow fc : D →
coker(f) such that fc ◦ f = 0 and for any other arrow g : D → E such that g ◦ f = 0, there
exists an unique arrow h : coker(f) → E such that the diagram

D

C coker(f)

E

0

f
fc

0

g

h

commutes.
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The notion of kernels and cokernels should be familiar from algebra and our construction
is a generalization of this. Given an arrow f : G → H in Ab, its kernel is the subgroup
of elements of G that map to the identity of H under f . We naturally get the inclusion
of the kernel into G as the associated map. We cannot directly use this construction
in the categorical setting since we use that our objects are sets and that arrows are
certain functions between sets. One could also define the kernel in Ab as being the
largest subgroup whose image is only the identity of H and the categorical definition
is trying to encode this. One can also think of the kernel as measuring the failure of
the injectivity of f , since the kernel is trivial if and only if f is injective. This idea
can be found all throughout mathematics: class groups in algebraic number theory
measure “how far off a number ring is from being a principal ideal domain”, (co)homology
measures the failure of exactness of (co)chain complexes (we will come back to this idea),
the divisor class group in algebraic geometry measures the failure of divisors to be principal .

The cokernel of f is usually defined as H/ im(f). We naturally get a map from H to the
cokernel of f by sending each element to its class in the quotient. We again cannot directly
use this definition because of the same reasons as before. We also lack the notion of the
image of an arrow (which will be defined in Definition 9.14) and of the quotient of objects.
Another way to think of the cokernel is as the smallest quotient of H such that anything
in the image of f gets mapped to zero and the categorical definition is an abstraction of
this. Similar to before, the cokernel of f can be interpreted as measuring the failure of the
surjectivity of f , since f is surjective if and only if its cokernel is trivial.

Lemma 9.10. In an additive category, kernels and cokernels are unique up to unique
isomorphism.

Proof. From the definitions, we see that kernels (respectively cokernels) are just a specific
limit (respectively colimit) and so they are unique up to unique isomorphism

Definition 9.11. Let C be an additive category. We say that a monomorphism f is normal
if it is the associated arrow of the kernel of some arrow. An epimorphism e is normal if it is
the associated arrow of the cokernel of some arrow.

In Ab, monomorphisms correspond to injective homomorphisms and epimorphisms to
surjective homomorphisms. It is straightforward to check that all monomorphisms are normal
and the normality of epimorphisms is a consequence of the first isomorphism theorem.

Definition 9.12. A category A is called abelian if it is additive, every arrow has a kernel
and cokernel and all epimorphisms and monomorphisms are normal.

Example 9.13. • For a given ring R, the category R-mod is abelian. A special case of
this is R = Z, which gives Ab.

• If C is a small category and A abelian, then the functor category AC is again abelian
[6, Example 1.6.4].

• If we choose C = Open(X)op, that is the opposite category of open subsets of a
topological space X, and for example A = Ab, then AC consists of presheaves of
abelian groups on X.
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• If we choose C to be the poset category of natural numbers, than we can realize the
category of chain complexes in A as a full subcategory of AC. This full subcategory
actually is again an abelian category [6, Example 1.6.4.2].

Definition 9.14. Let A be an abelian category with M,N ∈ Obj(A) and f ∈ A(M,N).
We define the image of f as im(f) := coker(fk).

For an arrow f : G → H in Ab, the map associated to the kernel of f is just the inclusion
ker(f) ↪→ G. This is injective so we can identify the cokernel with G/ ker(f). But by the first
isomorphism theorem, this is canonically isomorphic to im(f). We see that the categorical
definition is a generalization of the notion in Ab.

Lemma 9.15. Let A be an abelian category with M,N ∈ Obj(A) and f ∈ A(M,N). Then
f is an epimorphism if and only if for all P ∈ Obj(A) and g ∈ A(N,P ), g ◦ f = 0 implies
g = 0. Similarly, f is an monomorphism if and only if for all P ∈ Obj(A) and g ∈ A(P,M),
f ◦ g = 0 implies g = 0.

Proof. Suppose that f is an epimorphism, P ∈ Obj(A), g ∈ A(N,P ) and g ◦ f = 0. But
we also have that 0′ ◦ f = 0, where 0′ is the zero morphism from N to P , so by Lemma 9.4
it follows that g = 0′. Next suppose that for all P ∈ Obj(A) and g ∈ A(N,P ), g ◦ f = 0
implies g = 0. Let g, g′ ∈ A(N,P ) and suppose that g ◦ f = g′ ◦ f , so g ◦ f − (g′ ◦ f) = 0.
But g′ ◦ f + −g′ ◦ f = 0 ◦ f = 0 by Lemma 9.4, so −(g′ ◦ f) = −g′ ◦ f . Therefore
(g − g′) ◦ f = g ◦ f + −g′ ◦ f = 0, so by assumption g = g′. But this means that f is an
epimorphism. The proof for the condition for f to be a monomorphism is analogous.

Lemma 9.16. Let A be an abelian category with M,N ∈ Obj(A) and f ∈ A(M,N). Then
fc ∈ A(N, coker(f)) is an epimorphism.

Proof. Suppose that P ∈ Obj(A), g ∈ A(coker(f), P ) and g ◦ fc = 0. Note that the diagram

N

M coker(f)

P

f
fc

0

0

0

g

commutes, so by the universal property of the cokernel this g is unique. But substituting
the zero map for g still makes this diagram commute, so g = 0. By Lemma 9.15 we can
conclude that fc is an epimorphism.

If two arrows f, g in Ab are composable and we have that g ◦ f = 0, then we know that
im(f) ⊆ ker(g) and so we have an inclusion im(f) ↪→ ker(g). This inclusion lets us talk
about for example when im(f) = ker(g) and the quotient group ker(g)/ im(f). We will now
construct a map from im(f) to ker(g) in a general abelian category in this context. Suppose
now that A is an abelian category, with M,N,P ∈ Obj(A), f ∈ A(M,N), g ∈ A(N,P ) and
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g ◦ f = 0. We will construct a canonical arrow from im(f) to ker(g). From the definition of
im(f), the diagram

M N

im(f) ker(f)
0

fk

0

f

(fk)c

commutes. But now by the universal property of the cokernel, there exists a unique u ∈
A(im(f), N) such that the extended diagram commutes. Then we have that u ◦ (fk)c = f ,
so g ◦ u ◦ (fk)c = g ◦ f = 0, by assumption. We know from Lemma 9.16 that (fk)c is an
epimorphism, so by Lemma 9.15 we know that g ◦ u = 0. By the universal property of the
kernel, there exists a unique h ∈ A(im(f), ker(g)) such that the diagram

M N P

im(f) ker(f) ker(g)
0

fk

0

f

(fk)c

g

0gku

h

commutes. This arrow h, we will call the canonical arrow from im(f) to ker(g).

If we consider a (co)chain complex in an abelian category, that is a sequence of arrows such
that the composition of any two arrows is a zero morphism, we can consider this canonical
arrow at each composition and define its cokernel as the (co)homology of the complex at
that point.

Definition 9.17. Let A be an abelian category, with M,N,P ∈ Obj(A), f ∈ A(M,N),

g ∈ A(N,P ) and g ◦ f = 0. We say that the sequence M
f−→ N

g−→ P is exact at N ,
if g ◦ f = 0 and the canonical arrow from im(f) to ker(g) is an isomorphism. We call a
sequence of morphisms in A exact if it is exact at every object. Exact sequences of the form

0 →M
f−→ N

g−→ P → 0 are called short exact sequences.

In Definition 9.17 we did not give names to the arrows to and from the zero object, since by
definition they can only be zero morphisms. We will continue with this convention, also when

such maps occur in diagrams. We consider a short exact sequence 0 → M
f−→ N

g−→ P → 0
in Ab. Exactness at P means that im(g) = ker(P → 0) = P , so g is surjective. By
the first isomorphism theorem we get that P ∼= N/ ker(g), but exactness at N means that
ker g = im f , so P ∼= N/ im(f). Exactness at M gives that ker(f) = im(0 →M) = 0, so f is
injective. Therefore we can identify im(f) with M and, with some abuse of notation, we can
write P ∼= N/M . So intuitively we should think about short exact sequences as expressing
one object as the quotient of two others.
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Definition 9.18. Let A,B be abelian categories and F : A → B an additive functor. We

say that F is left exact if whenever 0 → M
f−→ N

g−→ P → 0 is a short exact sequence in A,

the sequence 0 → F (M)
F (f)−−→ F (N)

F (g)−−→ F (P ) is an exact sequence in B. Similarly, we say

that F is right exact if whenever 0 → M
f−→ N

g−→ P → 0 is a short exact sequence in A,

the sequence F (M)
F (f)−−→ F (N)

F (g)−−→ F (P ) → 0 is an exact sequence in B. A functor that is
both left and right exact, is called exact.

An example of a right exact functor is, given a commutative ring R and a R-module M , the
functor M ⊗R − : R-mod → R-mod. This functor assigns to the R-modules N and P the
R-modules M ⊗R N and M ⊗R P respectively. An arrow f ∈ R-mod(N,P ) gets mapped
to the function M ⊗R N →M ⊗R P : m⊗ n 7→ m⊗ f(n) (which is extended linearly). The
proof of the right-exactness of this functor (and the fact that it is well-defined) can be found
in [7, Proposition 2.18]. We will now show that (covariant) representable functors are left
exact.

Proposition 9.19. Let A be an abelian category and A ∈ Obj(A). Then the representable
functor A(A,−) : A → Ab is left exact.

Proof. We know from Lemma 9.3 that A(A,−) is additive. Suppose that 0 → M
f−→ N

g−→
P → 0 is a short exact sequence in A. We will begin by proving that the exactness of the
sequence atM implies that f is a monomorphism. From the universal property of the kernel
it follows that 0, of course together with the map 0 → 0, is a kernel of 0 → m. Then from
the definition of the cokernel, it follows that 0 is a cokernel of 0 → 0. But this is then
exactly im(0 → m). Since our sequence is exact at m, we have that ker(f) is isomorphic to
im(0 → m) and therefore a zero object. In particular, we have that fk = 0. Now suppose
that M ′ ∈ Obj(A) and h ∈ A(M ′,M) such that f ◦h = 0. But since 0 is a kernel of f , there
exists a unique i ∈ A(M ′, 0) (the zero morphism of course) such that the diagram

0 M N

0

M ′

f

h 0
i

commutes. But then h = 0 ◦ i = 0, so f is a monomorphism by Lemma 9.15. Now suppose
that φ, ψ ∈ A(A,M) such that f ◦ φ = f ◦ ψ. Since f is a monomorphism it follows that
φ = ψ and so the morphism of abelian groups f ◦ − : A(A,M) → A(A,N) is injective. But

this means that the sequence 0 → A(A,M)
f◦−−−→ A(A,N)

g◦−−−→ A(A,P ) in Ab is exact at
A(A,M).

Now it only rests to show that the sequence 0 → A(A,M)
f◦−−−→ A(A,N)

g◦−−−→ A(A,P ) is
exact at A(A,N). Since we are now working in Ab, this is equivalent to showing that for all
φ ∈ A(A,N), g ◦φ = 0 if and only if there exists ψ ∈ A(A,M) such that φ = f ◦ψ. Now let

48



φ ∈ A(A,N) and first suppose that there exists ψ ∈ A(A,M) such that φ = f ◦ ψ. By the

exactness of M
f−→ N

g−→ P at N , we have that g ◦ f = 0. Then g ◦φ = g ◦ f ◦ψ = 0 ◦ψ = 0.
Now suppose that g ◦ φ = 0. We have already established that 0 is a kernel of f . Suppose
that C ∈ Obj(A) and j ∈ A(M,C) such that the diagram

0 M N

M 0

C

f

IdM
j

commutes. Then j is certainly the unique arrow that can be added from the lower copy of
M to C such that the new diagram commutes. This shows that M , together with the arrow

IdM , is a cokernel of fk and therefore the image of f . By exactness of M
f−→ N

g−→ P at N ,
the canonical arrow h from M = im(f) to ker(g) exists and is an isomorphism. Therefore
the diagram

0 M N P

ker(g)

f g

0

gk

h

commutes. Since we assumed that g ◦φ = 0, we can use the universal property of the kernel
to see that there exists a unique r ∈ A(A, ker(g)) such that the extended diagram

0 M N P

A

ker(g)

f g

0

gk

h

φ 0

r

commutes. But now we see that φ = f ◦ h−1 ◦ r and h−1 ◦ r ∈ A(A,M) and this is exactly
what we needed to show.

Now we are ready to state and provide a sketch of the proof of Mitchell’s embedding theorem.
For a more complete exposition, we refer to [8, Part I].

Theorem 9.20 (Mitchell’s Embedding Theorem). Let A be a small abelian category. Then
there exists a ring R, with multiplicative identity, and an exact and fully faithful functor
from A to R-mod.

Proof. We begin by considering the functor y : Aop → AbA from Corollary 9.6. We know
from Corollary 9.6 that this functor is fully faithful. By Proposition 9.19, we know that all
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of these representable functors lie in the full subcategory of left exact functors, which we will
denote by L. The category L turns out to be abelian and the functor y : Aop → L is also
exact. Next one shows that L has an injective cogenerator I. We define R = L(I, I), where
composition of arrows is the multiplication of the ring. Note that IdR is the multiplicative
identity ofR. For a given object A ∈ L, L(A, I) is naturally a leftR-module, since elements of
R act on this abelian group by composition. This defines a functor L(−, I) : Lop → R-mod.
From the properties of I it can be shown that this functor is once again exact and fully
faithful. The composition L(−, I) ◦ y : A → R-mod is then a (covariant) exact and fully
faithful functor.
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